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1. Pythagorean Triangles

More than a thousand years before Pythagoras (570? - 495? BC) ancient Babylonians
knew how to construct right triangles with integer sides. An unknown Babylonian scribe
left us a cuneiform tablet, Plimpton 322, which lists fifteen right triangles in sexagesimal
(base 60) notation, and they appear to have been based on the assumption that

(a2 − b2, 2ab, a2 + b2)

is a always a right triangle for all integers a > b > 0. Of course we know this is true since

(a2 − b2)2 + (2ab)2 = (a2 + b2)2

in the notation of modern algebra. The two integers a and b are called the generators of
the triangle. If (L, M, N) is any triangle with integer sides and L2 + M2 = N2 it is easy
to find its generators. First, it must be reduced to its primitive (L/g, M/g, N/g) where
g = gcd(L, M). Now only one of the legs L/g and M/g is odd, so if necessary switch L
and M so that L/g is the odd leg. Then since a2 − b2 = L/g and a2 + b2 = N/g we have

a =
√

(N + L)/2g and b =
√

(N − L)/2g .

It is well known that a + b is always odd and that gcd(a, b) = 1.

2. Kräıtchik’s Cuboides Rationnels

In 1947 Maurice Kräıtchik published Volume III of his Théorie des Nombres. Born
in Russia in 1882 he spent much of his adult life in Belgium but emigrated to the United
States during World War II; he died in Brussels in 1957. The second half of Volume III
is devoted to “cuboides rationnels” and concludes with an extensive table of 241 cuboids
with odd edges less than one million, a remarkable achievement for a mathematician with
no access to an electronic computer.

Kräıtchik (page 76) defined a rational cuboid to be a triple (x, y, z) of rational numbers
satisfying x2 + y2 = Z2, x2 + z2 = Y 2, y2 + z2 = X2 where X, Y, Z were also rational
numbers. Kräıtchik noted immediately that by multiplying through by the least common
multiple of the denominators, all the x, y, z, X, Y, Z could be assumed to be integers. The
cuboid was primitive if gcd(x, y, z) = 1 and he regarded two cuboids to be equivalent if
they reduced to the same primitive: thus (88, 234, 480) ≡ (132, 351, 720) since both reduce
to the primitive (44, 117, 240).
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Kräıtchik defined the derived cuboid (a concept first introduced by Euler) of (x, y, z)
to be DK (x, y, z) = (yz, xy, xz) but because

D2

K
(x, y, z) = DK(yz, xy, xz) = (xyxz, yzxy, yzxz) = xyz · (x, y, z) ≡ (x, y, z)

I prefer to call this the dual of (x, y, z). Note that

DK(x, y, z, X, Y, Z) = (yz, xy, xz, yY, zZ, xX) .

Kräıtchik introduced the generators (a, b, c, d, e, f) by defining

x = 2kab = l(c2 − d2) , y = 2lcd = 2mef , z = k(a2 − b2) = m(e2 − f2)

and noted that the face diagonals are X = m(e2 + f2), Y = k(a2 + b2), Z = l(c2 + d2).
Multiplying x by y by z and canceling lmn we get

a2 − b2

2ab
· c2 − d2

2cd
=

e2 − f2

2ef
,

which Kräıtchik called the “relation fondamentale” for a rational cuboid. Note that

(e2 − f2)/2ef = z/y = tan θ

where θ is the acute angle opposite z in the face triangle (y, z, X). Similarly

(a2 − b2)/2ab = z/x and (c2 − d2)/2cd = x/y

are tangents of acute angles in the face triangles (x, z, Y ) and (x, y, Z). Hence Kräıtchik’s
“relation fondamentale” is in fact a trigonometric identity on the faces of any cuboid.

Example 1. Verify Kräıtchik’s relation for the cuboid (44, 117, 240). The trick is to
get the edges in the proper order. First x 6= 117 and y 6= 117 since x and y are both even:
thus z = 117. If x = 240 then 60/11 = 240/44 = x/y = (c2 − d2)/2cd and so 120cd =
11(c2 − d2); but this is impossible since c2 − d2 is odd. Therefore (x, y, z) = (44, 240, 117).
Now

(x, y, Z) = (44, 240, 244) = 4 · (11, 60, 61)

and so c2 − d2 = 11 and c2 + d2 = 61; thus (c, d, l) = (6, 5, 4). Similarly (x, z, Y ) =
1 · (44, 117, 125) gives (a, b, k) = (11, 2, 1) and (y, z, X) = (240, 117, 267) = 3 · (80, 39, 89)
gives (e, f, m) = (8, 5, 3). Consequently

a2 − b2

2ab
· c2 − d2

2cd
=

117

44
· 11

60
=

39

80
=

e2 − f2

2ef

and all is well.
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Kräıtchik gave formulas for recovering the three sides:

x = lcm(2cd, a2 − b2) , y = lcm(2ab, 2ef) , z = lcm(c2 − d2, e2 − f2)

where lcm is the least common multiple. Continuing Example 1 we have

x = lcm(44, 11) = 44 , y = lcm(60, 80) = 240 , z = lcm(117, 39) = 117

with the cuboid (x, y, z) already primitive. The generators of (x, y, z) can also be used to
find the dual cuboid (x′, y′z′) = (yz, xy, xz). Note that

x′

y′
=

yz

xy
=

z

x
,

z′

x′
=

xz

yz
=

x

y
,

z′

y′
=

xz

xy
=

z

y

and this means that the three right triangles in the faces of (x, y, z) and those in its dual
(x′, y′, z′) reduce to the same three primitive right triangles. Only z/y keeps the same
face in the dual, so Kräıtchik calls (y, z, X) the “triangle résultant” while the other two,
(x, y, Z) and (x, z, Y ), he calls the “triangles composants”. Thus Kräıtchik simply switches
(a, b) and (c, d) to get x′ = lcm(2ab, c2−d2), y′ = lcm(2cd, 2ef), z′ = lcm(a2−b2, e2−f2)
so that x′ = lcm(60, 117) = 2340, y′ = lcm(44, 80) = 880, z′ = lcm(11, 39) = 429 and
again (x′, y′, z′) is already primitive.

Example 2. Kräıtchik (page 82) took (a, b, c, d, e, f) = (6, 5, 4875, 3916, 10413, 10000)
so that

a2 − b2

2ab
· c2 − d2

2cd
=

11

60
· 8791 · 959

2 · 4875 · 3916
=

11

22 · 3 · 5 · 59 · 149 · 7 · 137

2 · 3 · 53 · 13 · 22 · 11 · 89

=
137 · 149 · 7 · 59

2 · 32 · 13 · 89 · 24 · 54
=

20413 · 413

2 · 10413 · 10000
=

e2 − f2

2ef

and this means that a, b, c, d, e, f should generate a cuboid (x, y, z). Then with the above
lcm formulas he obtained

x = 22 · 3 · 5 · 7 · 59 · 137 · 149 = 505834140

y = 25 · 32 · 54 · 11 · 13 · 89 = 2290860000

z = 7 · 11 · 59 · 137 · 149 = 92736259

and

x′ = 23 · 3 · 53 · 11 · 13 · 89 = 38181000

y′ = 25 · 32 · 54 · 13 · 89 = 20826000

z′ = 7 · 59 · 137 · 149 = 8430569 .

It is clear from the factorizations that both of these cuboids are already primitive. I suspect
that Kräıtchik engineered this example as follows: he started with f = 10000 = 24 ·54 and
then fiddled with various values for e until he found e = 10413 = 32 · 13 · 89 with

e2 − f2 = (e + f)(e − f) = 20413 · 413 = 137 · 149 · 7 · 59 .
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Then he set c+d = 59·149 and c−d = 7·137 so that c2−d2 = e2−f2 , c = 3916 = 22 ·11·89,
d = 4875 = 3 · 53 · 13 and hence

a2 − b2

2ab
=

e2 − f2

2ef
÷ c2 − d2

2cd
=

cd

ef
=

22 · 11 · 89 · 3 · 53 · 13

32 · 13 · 89 · 24 · 54
=

11

60

which gave a = 6 and b = 5. Just a hunch.

3. The Raines–Roberts Computer Search

In 2015 Tim Roberts used a 20-year-old search method of mine to find 75,868 different
primitive cuboids on the Linux Cluster at the University of Queensland in Australia. The
search method is described in detail in the first half of my paper “Stalking the Perfect
Cuboid” published on Roberts’ website, so only a brief outline is given here. Let

q = a2 − b2, r = 2ab, s = a2 + b2, t = c2 − b2, u = 2cd, v = c2 + d2

so that q2 + r2 = s2 and t2 + u2 = v2. In each of the four cases

Case x y z x2 + y2 y2 + z2

I qu ru rt s2u2 r2v2

II qu qt rt q2v2 s2t2

III qt rt ru s2t2 r2v2

IV qt qu ru q2v2 s2u2

x2 + y2 and y2 + z2 are always perfect squares, so (x, y, z) is a cuboid whenever x2 + z2

happens to be a perfect square. Of course (x, y, z) must be reduced to its primitive
(x/g, y/g, z/g) where g = gcd(x, y, z). To make sure that (q, r, s) and (t, u, v) were indeed
primitive Pythagorean triangles we required that gcd(a, b) = gcd(c, d) = 1 and that a + b
and c + d were always odd. (This avoided a huge number of equivalent cuboids, and made
the program run much faster.) Finally we assumed that a > b > 0 and that a ≥ c > d > 0
making the a-loop the dominant loop in the search. Since there were four nested loops,
clearly run time was O(a4). The search on the Linux Cluster was terminated at a = 15000
and took about seven weeks. I’m not sure how many nodes on the Cluster were used on
any given week — that was Roberts’ department!

The very first cuboid found by the search program was the Case I primitive cuboid
(x, y, z) = (275, 240, 252) with (a, b, c, d, e, f) = (8, 3, 5, 2, 18, 7). Because x is odd we have

e2 − f2

2ef
=

x

z
=

qu

rt
=

a2 − b2

2ab
· 2cd

c2 − d2

so it would appear that Kräıtchik’s relation has failed. But not really — we saw in
Example 1 that that the order of the sides x, y, z is crucial — the generators have simply
been switched about. The second cuboid found in the search was the Case II cuboid
(x, y, z) = (1100, 1155, 1008) with the same generators.1 If z is odd in Case I then the

1Case I and Case II cuboids are duals of each other, as are Case III and IV cuboids. As we saw in

Section 2, dual cuboids always have the same generators. I have always used the dual formula D(x, y, z) =

(xy, xz, yz) which differs from Kräıtchik’s only in the order of the components.
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generators satisfy
2ab

a2 − b2
· c2 − d2

2cd
=

e2 − f2

2ef
,

another switch. Case III cuboids are simpler: x = qt is always odd and so

a2 − b2

2ab
· c2 − d2

2cd
=

e2 − f2

2ef
.

In Cases I and II the computer search found a cuboid whenever

x2 + z2 = q2u2 + r2t2 = 4a2b2(c2 − d2)2 + 4c2d2(a2 − b2)2

was a perfect square, and in Cases III and IV whenever

x2 + z2 = q2t2 + r2u2 = (a2 − b2)2(c2 − d2)2 + 16a2b2c2d2

was a perfect square. Of course it is much more efficient to compute q and r in the outer
loops and t and u in the inner loops and then check whether (qu)2 +(rt)2 or (qt)2 +(ru)2

is a perfect square.
Over the past fifty years, a number of people have computed face cuboids in their

search for a perfect cuboid. (A face cuboid has
√

x2 + y2 + z2 an integer, but one of the
face diagonals not an integer.) Recently it occurred to me that the Linux Cluster could
easily have found tens of thousands of these face cuboids, no doubt a world record, just
by checking x2 + y2 + z2 — after all the q, r, t, u were right there — but after a moment’s
thought I realized this would not help find a perfect cuboid: the Cluster had already
checked x2 + z2 for all appropriate generators a, b, c, d with a ≤ 15000, so no face cuboid
found in this range could possibly be perfect.

Example 3. Let’s return to Example 2, this time from a computer perspective.
With generators (a, b, c, d, e, f) = (4875, 3916, 6, 5, 10413, 10000) the two dual cuboids were
numbers 4617 and 4618 in File 5, our record of all cuboids with 4000 < a ≤ 5000, and
they were identified as Case III and Case IV respectively. The Case III cuboid was

(x, y, z) ≡ (qt, rt, ru) = (92736259, 419991000, 2290860000)

where q = a2 − b2 = 8430569, r = 2ab = 38181000, t = c2 − d2 = 11, and u = 2cd = 60.
Since g = gcd(qt, rt, ru) = 11 cuboid # 4167 was

(x, y, z) = (8430569, 38181000, 208260000) .

Similarly # 4168 was the Case IV cuboid

(x′, y′, z′) ≡ (qt, qu, ru) = (92736259, 5058344140, 2290860000)

and this was a primitive cuboid since gcd(qt, qu, ru) = 1. This pair of cuboids really
stood out in the list because the generators (c, d) = (6, 5) were so small: the neighboring
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primitive cuboids in the list all had edges with 11 to 15 digits. In the course of testing
cuboid parametric formulas, I suppose I have computed many millions of duals by the
usual method

xy = 321887554989000 , xz = 175575029990000 , yz = 795175060000000

with g = gcd(xy, xz, yz) = 3471000 to find

(x′, y′, z′) = (xy, xz, yz)/g = (92736259, 5058344140, 2290860000)

and my computer never once complained. Computers never use factorization to compute
gcd’s — instead they use the Euclidean Algorithm, which is super fast even when the
integers have hundreds of digits. Finding all the factors of such large numbers can be
difficult to impossible.

Deep down in the innermost loop of the Raines-Roberts search program there were
billions upon billions of square roots required. Indeed for a ≤ 15000 the number of square
roots inside the d-loop was2

O(a4) = 150004 ≈ 5 × 1016 .

Since a+b and c+d must be odd, this is reduced by a factor of four; also we have gcd(a, b) =
gcd(c, d) = 1 and the probability that two random positive integers are relatively prime is
6/π2. Thus the number of calculations is reduced by the factor

4 · (π2/6)2 = π4/9 ≈ 10.82 .

For each value of d there are two square roots: the computer had to check whether

x2 + z2 = (qu)2 + (rt)2 = 4a2b2(c2 − d2)2 + 4c2d2(a2 − b2)2 (1)

or
x2 + z2 = (qt)2 + (ru)2 = (a2 − b2)2(c2 − d2)2 + 16a2b2c2d2 (2)

was a perfect square. Hence the total number of square roots required for a ≤ 15000 was
about 1016 = ten million billion.

A curious fact was that we did not need the value of
√

x2 + z2, only whether or not
it was an integer. Tim Roberts found a C++ function which answered this question Yes
or No, and was three times faster than the ordinary square root function; this no doubt
saved many hours on the Linux Cluster.

2Actually, since a > b > 0 and a ≥ c > d > 0 a more accurate estimate is

A
∑

a=1

a−1
∑

b=1

a
∑

c=1

c
∑

d=1

1 ≈

∫

A

0

∫

a

0

∫

a

0

∫

c

o

dd dc db da = A4/8 .

This would lower the estimate for A = 15000 to roughly 1.25× 1015 = 1.25 million billion square roots.
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4. Kräıtchik’s 1947 Search Method

On page 80 of Volume III of his Théorie des Nombres Kräıtchik cites formulas (1) and
(2) and uses one of them to derive Euler’s parametric cuboid formulas — but he never
used either (1) or (2) to search for cuboids. Instead he used a method mentioned on
the first page of my paper “Stalking the Perfect Cuboid”. Since every primitive cuboid
has one odd edge and two even edges, Kräıtchik’s idea was to test each odd number in
sequence. For example, the smallest odd number that produces a cuboid is 85, an edge
in the primitive cuboid (85, 132, 720). To find this cuboid, Kräıtchik mentions (page 104)
that there are only four y-values such that (85, y, Z) is a Pythagorean triangle, namely
y = 132, 154, 720, and 3612, but he does not say how he got those four numbers. Here’s
one way to find them: the legs (x, y) in a Pythagorean triangle must satisfy x = (a2−b2)k
and y = 2abk so for x = 85 we have

k a2 − b2 a + b a − b a b 2abk

1 85 85 1 43 42 3612
1 85 17 5 11 6 132
5 17 17 1 9 8 720
17 5 5 1 3 2 154

and there are no other possible values for y. Since 1322 + 7202 = 7322 we have found
the primitive cuboid (85, 132, 720). Note that C(4, 2) = 6 and the other five pairs do not
check: for example 36122 + 1322 = 13063968 is not a perfect square.

Kräıtchik also shows how to test x = 1155 = 3 · 5 · 7 · 11. Because there are four prime
factors, he finds (34 − 1)/2 = 40 candidates for y, and all C(40, 2) = 780 pairs must be
checked! In fact two of these 780 actually do check:

11002 + 10082 = 14922 and 63002 + 66882 = 98112

while the other 778 pairs fail; thus there are exactly two primitive cuboids with odd edge
1155, namely (1155, 1100, 1008) and (1155, 6300, 6688).

A few years ago I wrote a computer program in Ubasic which performed the Kräıtchik
search. When x = 3, 5, 7, 9, · · · was small the program was lightning fast, but as you might
expect, it became awfully slow as x grew larger. In fact, I eventually got an error message
that there were too many y candidates (more than 30000) and the memory had overflowed
— the program had to remember all the y candidates because it had to test them in pairs
— so I terminated the project. I suppose I could have stored the y candidates on the hard
disk, but even then the computer would still have to check all C(30000, 2) = 449985000
pairs — all that to test a single large odd number!

Kräıtchik concluded Volume III with a ten-page table of the 241 primitive cuboids he
found with odd edge less than one million. There were 1, 11, 39, 100, 214 cuboids with
odd edge less than 102, 103, 104, 105, 106 respectively. The Raines-Roberts counts for 102

to 107 were 1, 11, 39, 120, 416, and 1165 respectively. Kräıtchik never claimed his table
was complete.
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5. Some Relations on a Perfect Cuboid

Let us pretend that we actually possess a perfect cuboid. That is, let (x, y, z) be a
primitive perfect cuboid with

x2 + y2 = Z2, x2 + z2 = Y 2, y2 + z2 = X2, x2 + y2 + z2 = W 2.

We may assume that x is odd so that Y, Z, W are also odd and y, z, X are even. If necessary
we switch y and z so that y/z = (e2 − f2)/2ef . Thus if we set

x/y = (a2 − b2)/2ab and x/z = (c2 − d2)/2cd

then Kräıtchik’s fundamental relation takes the form

c2 − d2

2cd
=

x

z
=

x

y
· y

z
=

a2 − b2

2ab
· e2 − f2

2ef
. (3)

In addition we have

y

z
=

yx

xz
=

2ab

a2 − b2
· c2 − d2

2cd
,

Z

y
=

a2 + b2

2ab
,

Z

x
=

a2 + b2

a2 − b2
,

Y

z
=

c2 + d2

2cd
,

Y

x
=

c2 + d2

c2 − d2
,

X

z
=

e2 + f2

2ef
,

X

y
=

e2 + f2

e2 − f2
.

Now a perfect cuboid also has three other Pythagorean triangles: since

x2 + X2 = W 2 , y2 + Y 2 = W 2 , z2 + Z2 = W 2

there are generators α, β, γ, δ, ε, η such that

x

X
=

α2 − β2

2αβ
,

Y

y
=

γ2 − δ2

2γδ
,

Z

z
=

ε2 − η2

2εη
,

W

X
=

α2 + β2

2αβ
,

W

y
=

γ2 + δ2

2γδ
,

W

z
=

ε2 + η2

2εη
,

W

x
=

α2 + β2

α2 − β2
,

W

Y
=

γ2 + δ2

γ2 − δ2
,

W

Z
=

ε2 + η2

ε2 − η2
,

and these give still more relations:

X

Y
=

X

y
· y

Y
=

e2 + f2

e2 − f2
· 2γδ

γ2 − δ2
,

a2 − b2

2ab
=

x

y
=

x

W
· W

y
=

α2 − β2

α2 + β2
· γ2 + δ2

2γδ
,

X

Z
=

X

x
· x

Z
=

2αβ

α2 − β2
· a2 − b2

a2 + b2
,

c2 − d2

2cd
=

x

z
=

x

W
· W

z
=

α2 − β2

α2 + β2
· ε2 + η2

2εη
,

Y

Z
=

Y

z
· z

Z
=

c2 + d2

2cd
· 2εη

ε2 − η2
,

e2 − f2

2ef
=

y

z
=

y

W
· W

z
=

2γδ

γ2 + δ2
· ε2 + η2

2εη
.
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For the Greek generators I could not find an identity similar to (3) — it would appear
there is no such fundamental relation. However, there are many more identities between
the Latin and Greek generators. A typical example is

2αβ

α2 − β2
=

X

x
=

X

y
· y

Y
· Y

x
=

e2 + f2

e2 − f2
· 2γδ

γ2 − δ2
· c2 + d2

c2 − d2

which is equivalent to

c2 + d2

c2 − d2
· e2 + f2

e2 − f2
=

2αβ

α2 − β2
· γ2 − δ2

2γδ

and I found ten more in this form. I also found eight identities of the form

a2 − b2

a2 + b2
· 2cd

c2 + d2
=

α2 − β2

α2 + β2
· γ2 + δ2

γ2 − δ2
· 2εη

ε2 − η2

but perhaps my favorite is the singular identity

a2 + b2

a2 − b2
· c2 + d2

2cd
· e2 + f2

e2 − f2
=

2αβ

α2 − β2
· α2 − δ2

2γδ
· ε2 − η2

2εη

which involves all twelve Latin and Greek generators.
It may seem a bit strange to pursue such identities when a perfect cuboid might not

even exist. However, we are not merely playing with the empty set: all these identities
are valid for any primitive cuboid if we do not require the Greek generators to be integers.
If we write the identity (α2 − β2)/2αβ = x/X as Xα2 − 2xαβ − β2X = 0 then by the
quadratic formula

α/β =
2x +

√
4x2 + 4X2

2X
=

x + W

X

(note that we do not use ± because α and β are positive) and similarly we find

γ

δ
=

Y + W

y
and

ε

η
=

Z + W

z

so α/β, γ/δ, ε/η are all irrational since W is irrational. On the other hand a/b = (x+Z)/y,
c/d = (x + Y )/z, and e/f = (y + X)/z are all rational.

Example 4. Consider the primitive cuboid

(x, y, z, X, Y, Z) = (117, 44, 240, 244, 267, 125)

which has generators (a, b, c, d, e, f) = (11, 2, 8, 5, 6, 5) and W =
√

73225 = 5 ·
√

29 · 101.
Then

a

b
=

117 + 125

44
=

11

2
,

c

d
=

117 + 267

240
=

8

5
,

e

f
=

44 + 244

240
=

6

5
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as expected while α/β = (117 + W )/244, γ/δ = (267 + W )/44, and ε/η = (125 + W )/240
are not rational. Indeed a little more work finds

α =
√

36671 , β = 7
√

2 · 373 , γ =
√

2 · 19 · 967 ,

δ =
√

36479 , ε = 3 · 5
√

163 , η = 5
√

2 · 17 · 43

so none of the Greek generators are rational. I wonder if this is true for all primitive
non-perfect cuboids — could some of their Greek generators be integers?

Concluding Remark. Many people who have searched for the elusive perfect cuboid
become convinced that when the body diagonals

√

x2 + y2 + z2 grow too large they have
almost no chance of being an integer, and so a perfect cuboid just does not exist. I find
that argument plausible on even days of the month. But on odd days I have this nagging
feeling that a perfect cuboid is hiding out there somewhere.
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