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AN INEQUALITY APPROACH OF THE COLLATZ
CONJECTURE
Adarsha Chandra

Abstract:

We define the Collatz Function ����: ℕ → ℕ as follows-

���� � ≔
�
2

, �� � �� ����

���� � ≔ 3� + 1, �� � �� ���

We define the two branches of the above function �: ℕ → ℕ and �: ℕ → ℕ as
follows-

�: ℕ → ℕ � ≔
�
2

, �� � �� ����

�: ℕ → ℕ � ≔ 3� + 1, �� � �� ���

We also define the functional sequence of a number as the set of functions applied
consecutively on a certain natural number until the number 1 is obtained, and then
prove that any two consecutive �'� are separated by at least one � . We then define
��(�) as the value obtained by the execution of the functional sequence:

�(�) ≡ ���1…����

on �.

We then show that if �� � > � for all natural values of �, then there exists a
function �� �, � such that

�� � > �� �, � ��� ��� �, � ∈ ℕ, ��� lim
�→∞

�� �, � → ∞

This implies that �1 � → ∞, which is possible if and only if � → ∞, providing
a contradiction. Hence, �� � < � for some � ∈ ℕ, implying that the Collatz
Conjecture is true
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INTRODUCTION

The Collatz Conjecture, also referred to as the Ulam Conjecture, the
Kakutani Problem, the Thwaites Conjecture, Hasse’s Algorithm or the
Syracuse Problem, was proposed in 1937 by German Mathematician
Lothar Collatz.

The conjecture states that if we define the function

����: ℕ → ℕ such that-

���� � ≔
�
2

, �� � �� ����

���� � ≔ 3� + 1, �� � �� ���

Then ∀ � ∈ ℕ, ∃ � ∈ ℕ such that ����
� � = 1, where

����
�(�) = ����(����(���� … � …), where ���� is repeated k times.

This conjecture has been verified to be true for all natural numbers till an
approximate value of 268

Since the posing of the problem, there have been many partial results on
it, the most recent of which is the partial result established by
mathematician Terence Tao, stating that ‘almost’ all numbers, under
repetitive execution of the function ����: ℕ → ℕ , attain almost bounded
values. Before that, partial results were established by mathematician
Riho Terras in 1976 that ‘almost’ all numbers � yield an Ω < �, under
repetitive execution of the function ����: ℕ → ℕ. This upper bound was
later improved to �0.869 in 1979, and then it was further improved
to �0.7925 in 1994.
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1. SOME NOTATIONS

Let us define �: ℕ → ℕ � ≔ �
2

, �� � �� ����

�: ℕ → ℕ � ≔ 3� + 1, �� � �� ���

Also, let us define the ‘functional sequence’ for any � ∈ ℕ as the set of
functions applied consecutively on a certain natural number until the
number 1 is obtained, and let �� denote the functional sequence of �.

For instance, if we have the natural number 5, we have the following
continuous mapping obtained by repetitive execution of the functions
�: ℕ → ℕ and �: ℕ → ℕ, in obedience with the obtained parities:

5 → 16 → 8 → 4 → 2 → 1

Note that the functions applied, in consecutive order, are �, �, �, � ��� �.
Hence, the functional sequence of 5 is:

�5 ≡ {�����}

We can also shorten the sequence to:

�5 ≡ ��4

Since there are 4 consecutive repetitions of �: ℕ → ℕ.

2. SOME IMPORTANT RESULTS
Theorem 2.1

��� ��� � ∈ ℕ, �� ���� ��� ������� ��� ����������� �'�.

�����
Let us assume contrarily that ∃ � ∈ ℕ such that �� contains two
consecutive �'�. Hence, a certain number of executions of ����: ℕ →
ℕ yields a certain Ω ∈ ℕ such that the function �: ℕ → ℕ is
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applicable twice. This is possible if and only if both Ω and � Ω =
3Ω + 1 are odd. We know that the subtraction of two odd numbers is
always even. Hence, 3Ω + 1 − Ω = 2Ω + 1 is even, Ω ∈ ℕ.
Evidently, this is a contradiction. Thus, the assumption must be
incorrect and hence,

��� ��� � ∈ ℕ, �� ���� ��� ������� ��� ����������� �'�.

This concludes the proof □

The above theorem implies that any two consecutive �'� are separated
by at least one �. Thus, for any odd �, �� is of the form:

�� ≡ ���1���2���3���4… , �ℎ��� �� ∈ ℕ, ∀� ∈ ℕ

Theorem 2.2

∀ � ∈ ℕ≥�, ∃ � ∈ ℕ ���ℎ �ℎ�� ����
� � < �

�����
The result is obvious for even values of � . This is because if � is
even, then � � = �

2
< �. Hence, we can concern ourselves with the

odd values of � only.

Let us now consider a certain odd natural number � ∈ ℕ. Hence, the
functional sequence of � must be of the form:

�� ≡ ���1���2���3���4… , �ℎ��� �� ∈ ℕ, ∀ � ∈ ℕ

Let us define ��(�) as the value obtained by the execution of the
functional sequence:

�(�) ≡ ���1…����

on �.
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Now, let us assume contrarily that
∀ � ∈ ℕ, ����

� � ≥ �

Hence, it is evident that
�� � ≥ �, ∀ � ∈ ℕ (∗ )

Claim 2.2.1

�� � �� ��������� ��� ������� �ℎ� ��������:
��+1 � = 3�� � +1

2��+1
, ∀ � ∈ ℕ

�����
Note that, by definition, we can write

��+1 � = ���+1(�(���(�(…(� ��1 � …)

and, �� � = (���(�(…(� ��1 � …)

The substitution of the second equation into the first gives-

��+1 � = ���+1 � �� � = ���+1 3�� � + 1

Hence,

��+1 � = 3�� � +1
2��+1

This concludes the proof □

Claim 2.2.2

��(�) �� ����� �� −
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�� � =
3�� + 3�−1 + �=2

� 3�−� ∙ 2�1+…+��−1�
2�1+…+��

�����
Notice that for � = 1, �1 � is the value obtained by the execution of
the functional sequence

� ≡ {���1}
on �.

Hence,

�1 � = ��1 � � = ��1 3� + 1 =
3� + 1

2�1

which is in accordance with our claim.

This serves as the base for an inductive process.

Let us now assume that

�� � =
3�� + 3�−1 + �=2

� 3�−� ∙ 2�1+…+��−1�
2�1+…+��

for a certain � ∈ ℕ.

Hence, using Claim 2.2.1, we can write ��+1 � as-

��+1 � = 3�� � +1
2��+1

=

3
3��+ 3�−1+

�=2

�−1
3�−�∙2�1+…+��−1�

2�1+…+�� +1

2��+1
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Hence, ��+1 � =

3�+1�+ 3�+
�=2

�
3 �+1 −�∙2�1+…+��−1� +2�1+…+��

2�1+…+��

2��+1

Note that,

�=2

�

3 �+1 −� ∙ 2�1+…+��−1� + 2�1+…+�� =
�=2

�+1

3 �+1 −� ∙ 2�1+…+��−1�

Hence,

��+1 � =

3�+1� + 3� + �=2
�+1 3 �+1 −� ∙ 2�1+…+��−1�

2�1+…+��

2��+1

Which implies,

��+1 � =
3�+1� + 3� + �=2

�+1 3 �+1 −� ∙ 2�1+…+��−1�
2�1+…+��+1

Thus, our claim holds true for (� + 1).

Hence, by the principle of mathematical induction,

∀ � ∈ ℕ, �� � =
3�� + 3�−1 + �=2

� 3�−� ∙ 2�1+…+��−1�
2�1+…+��

This concludes the proof □
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Claim 2.2.3

Let �: ℕ → ℕ �� ��� ��������� �������� ���ℎ �ℎ��
�� � ≥ � � , ∀ � ∈ ℕ

�ℎ��,

�� � ≥
2��+1 ∙ � � − 1

3

�����
We have,

�� � ≥ � � , ∀ � ∈ ℕ

Hence,
�� � ≥ � � ��� ��+1 � ≥ � � , ∀ � ∈ ℕ

This, along with Claim 2.2.2 gives,

�� � =
3��+ 3�−1+

�=2

�
3�−�∙2�1+…+��−1�

2�1+…+�� ≥ � � (∗∗)

��+1 � =
3�+1�+ 3�+

�=2

�+1
3 �+1 −�∙2�1+…+��−1�

2�1+…+��+1
≥ � � ( ∗∗∗ )

Multiplying both sides of the inequality established in ( ∗∗∗ ) by 2��+1

3
;

3�� + 3�−1 + �=2
�+1 3�−� ∙ 2�1+…+��−1�

2�1+…+��
≥

2��+1 ∙ � �
3

Which implies,
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3�� + 3�−1 + �=2
� 3�−� ∙ 2�1+…+��−1� + 3−12�1+…+��

2�1+…+��
≥

2��+1 ∙ � �
3

Thus,

3�� + 3�−1 + �=2
� 3�−� ∙ 2�1+…+��−1�

2�1+…+��
+ 3−1 ≥

2��+1 ∙ � �
3

Hence,

�� � +
1
3

≥
2��+1 ∙ � �

3
And thus,

�� � ≥
2��+1 ∙ � � − 1

3
Hence,

If �: ℕ → ℕ �� �� ��������� �������� ���ℎ �ℎ��
�� � ≥ � � , ∀ � ∈ ℕ

�ℎ��,

�� � ≥
2��+1 ∙ � � − 1

3
This concludes the proof □

Let us choose the function � � = �. We can make this selection
because-

�� � ≥ �, ∀ � ∈ ℕ

Also, let us define the function
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� �, � =
2��+1 ∙ � − 1

3
Hence, Claim 2.2.3 implies-

�� � ≥ � �, �

Claim 2.2.4
�� � ≥ � �, �(� + 1, � � + 2, …, � � + � − 1, �). . ,

∀ �, � ∈ ℕ

�����

From Claim 2.2.3, we obtain-

�� � ≥ � �, � , ∀ � ∈ ℕ

Implying that the claimed result holds true for � = 1. This serves as the
base for an inductive process.

Let us now assume that the claimed result is true for � = �, � ∈ ℕ

Hence,

�� � ≥ � �, �(� + 1, � � + 2, …, � � + � − 1, �)… , ∀ � ∈ ℕ

Thus,

��+1 � ≥ � � + 1, �(� + 2, � � + 3, …, � � + �, �). . , ∀ � ∈ ℕ

Which implies,

3�� � + 1
2��+1

≥ � � + 1, �(� + 2, � � + 3, . . , � � + �, �)… ,

∀ � ∈ ℕ

Thus,
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�� � ≥
2��+1� � + 1, �(� + 2, � � + 3, …, � � + �, �)… − 1

3
But,

2��+1� � + 1, �(� + 2, � � + 3, …, � � + �, �)… − 1
3

= �(�, � � + 1, �(� + 2, � � + 3, …, � � + �, � …)

Implying that the claimed result holds true for � = � + 1, � ∈ ℕ.

Hence, by the principle of mathematical induction,

�� � ≥ � �, �(� + 1, � � + 2, …, � � + � − 1, �)…
∀ �, � ∈ ℕ

This concludes the proof □

Let us now define the function �: ℕ3 → ℕ as follows-

�� �, � ≔ � �, �(� + 1, � � + 2, …, � � + � − 1, �)…

Claim 2.2.5
�� �, � is recursive and obeys the equality-

��+1 �, � =
2��+1�� � + 1, � − 1

3
, ∀ �, � ∈ ℕ

�����
We have,

�� �, � = � �, �(� + 1, � � + 2, …, � � + �, �)… ∀ �, � ∈ ℕ
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But,
�� � + 1, � = � � + 1, �(� + 2, � � + 3, …, � � + �, �). . .

Thus,

�� �, � = � �, �� � + 1, � =
2��+1�� � + 1, � − 1

3
, ∀ �, � ∈ ℕ

This concludes the proof □

Claim 2.2.6

�� �, � =
2 �=1

� (��+�)� � − ( �=0
�−1 3�2��+1+��+2+…+��+�−�−1)�

3� ,

∀ �, � ∈ ℕ

�����
Note that

�1 �, � =
2��+1� − 1

3

Implying that the claimed result holds true for � = 1

Let us now assume that the claimed result is true for � = �, � ∈ ℕ.

Thus,

�� �, � =
2 �=1

� (��+�)� � − ( �=0
�−1 3�2��+1+��+2+…+��+�−�−1)�

3�

Therefore, from Claim 2.2.5, we obtain-

��+1 �, � = � �, �� � + 1, �
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=
2��+1

2 �=1
� (��+1+�)� � − ( �=0

�−1 3�2��+2+��+3+…+��+�−�)�
3� − 1

3

=
2��+1 2 �=1

� ��+1+�� � − ( �=0
�−1 3�2��+2+��+3+…+��+�−�)� − 3�

3�+1

=
2��+1 2 �=2

�+1 (��+�)� � − ( �=0
�−1 3�2��+2+��+3+…+��+�−�)� − 3�

3�+1

=
2 �=1

�+1 (��+�)� � − ( �=0
�−1 3�2��+1+��+2+��+3+…+��+�−�)� − 3�

3�+1

=
2 �=1

�+1 (��+�)� � − ( �=0
� 3�2��+1+��+2+��+3+…+��+�−�)�

3�+1

Implying that the claimed result holds true for � = � + 1, � ∈ ℕ.

Hence, by the principle of mathematical induction,

�� �, � =
2 �=1

� (��+�)� � − ( �=0
�−1 3�2��+1+��+2+…+��+�−�−1)�

3� ,

∀ �, � ∈ ℕ

This concludes the proof □
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Claim 2.2.7

��+� �, � − �� �, � ≥
2
3

�

�=0

�−1
2
3

� 2��+�+�+1

3
− 1 � −

1
3� ,

∀ �, � ∈ ℕ

�����

Note that,

��+1 �, � − �� �, �

=
2 �=1

�+1 ��+�� � − ( �=0
� 3�2��+1+��+2+…+��+�−�)�

3�+1

−
2 �=1

� (��+�)� � − ( �=0
�−1 3�2��+1+��+2+…+��+�−�−1)�

3�

=
2 �=1

� ��+�� 2��+�+1�

3�+1 −
( �=0

� 3�2��+1+…+��+�−�)�
3�+1

−
2 �=1

� (��+�)� �

3� − �=0
�−1 3�2��+1+…+��+�−�−1�

3�

=
2 �=1

� ��+�� ( 2��+�+1 − 3 �)

3�+1

−
( �=0

� 3�2��+1+��+2+…+��+�−�) − 3( �=0
�−1 3�2��+1+��+2+…+��+�−�−1� )�

3�+1



15

=
2 �=1

� ��+�� ( 2��+�+1 − 3 �)

3�+1

−
( �=0

� 3�2��+1+��+2+…+��+�−�) − ( �=0
�−1 3�+12��+1+��+2+…+��+�−�−1� )�

3�+1

Now, note that-

�=0

�−1

3�+12��+1+��+2+…+��+�−�−1� =
�=1

�

3�2��+1+��+2+…+��+�−��

Hence,

��+1 �, � − �� �, �

=
2 �=1

� ��+�� ( 2��+�+1 − 3 �)

3�+1

−
( �=0

� 3�2��+1+��+2+…+��+�−�) − �=1
� 3�2��+1+��+2+…+��+�−���

3�+1

=
2 �=1

� ��+�� ( 2��+�+1 − 3 �)

3�+1 −
302��+1+��+2+…+��+�

3�+1

=
2 �=1

� ��+�� ( 2��+�+1 − 3 �) − 2��+1+��+2+…+��+�

3�+1
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=
2 �=1

� ��+�� ( 2��+�+1 − 3 � − 1)

3�+1

Now, note that ��+� ≥ 1, ∀ � ∈ ℕ≤�. Hence,

2 �=1
� ��+�� ≥ 2 �=1

� 1� = 2�

This implies,

��+1 �, � − �� �, � ≥
2� 2��+�+1 − 3 � − 1

3�+1

=
2
3

� 2��+�+1

3
− 1 � −

1
3

, ∀ � ∈ ℕ

The above implies that the claimed result holds true for � = 1. This
serves as the base for an inductive process.

Let us now assume that the claimed result holds true for � = �,
� ∈ ℕ. Thus-

��+� �, � − �� �, � ≥
2
3

�

�=0

�−1
2
3

� 2��+�+�+1

3
− 1 � −

1
3�

Also, note that by virtue of the arguments made initially, we can
state-

��+�+1 �, � − ��+� �, � ≥
2
3

�+� 2��+�+�+1

3
− 1 � −

1
3

As ��+1 �, � − �� �, � ≥
2
3

� 2��+�+1

3
− 1 � −

1
3

, ∀ � ∈ ℕ
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The addition of the above two inequalities yields-

��+�+1 �, � − �� �, �

≥ 2
3

�+� 2��+�+�+1

3
− 1 � − 1

3
+ 2

3

�

�=0
�−1 2

3

� 2��+�+�+1

3
−�

1 � − 1
3

Which gives-

��+�+1 �, � − �� �, �

≥
2
3

�

�=0

�−1
2
3

� 2��+�+�+1

3
− 1 � −

1
3

+
2
3

�

�
2��+�+�+1

3
− 1 � −

1
3

=
2
3

�

�=0

�
2
3

� 2��+�+�+1

3
− 1 � −

1
3� , ∀ � ∈ ℕ

Implying that the claimed result holds true for � = � + 1, � ∈ ℕ.

Hence, by the principle of mathematical induction,

��+� �, � − �� �, � ≥
2
3

�

�=0

�−1
2
3

� 2��+�+�+1

3
− 1 � −

1
3� ,

∀ �, � ∈ ℕ

This concludes the proof □
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Let us now consider the two sets-

�� ≡ � |0 ≤ � ≤ � − 1, ��+�+�+1 = 1 , ���

�� ≡ � |0 ≤ � ≤ � − 1, ��+�+�+1 ≥ 2

Note that �� and �� are disjoint sets (��∩ �� ≡ �). Thus, every � ∈ ℕ0,
0 ≤ � ≤ � − 1 can be casted into either of the two sets �� or ��. Hence,

2
3

�

�=0

�−1
2
3

� 2��+�+�+1

3
− 1 � −

1
3

�

=
2
3

�

�=0

�−1
2
3

�

�
2��+�+�+1

3
� − � −

1
3

=
2
3

�

�=0

�−1
2
3

�

�
2��+�+�+1

3
� −

3� + 1
3

=
2�

3�+1
�=0

�−1
2
3

�
2��+�+�+1� − (3� + 1)�

=
2�

3�+1
�=0

�−1
2
3

�

2��+�+�+1� −� (3� + 1)
�=0

�−1
2
3

�

�

Note that the sum-

� =
�=0

�−1
2
3

�

�
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is the sum of the first � terms of a Geometric Progression, starting with 1
and having a common ratio 2

3
. Hence,

� =
1 −

2
3

�

1 − 2
3

=
1 −

2
3

�

1
3

= 3 1 −
2
3

�

2
3

�

�=0

�−1
2
3

� 2��+�+�+1

3
− 1 � −

1
3�

=
2�

3�+1
�=0

�−1
2
3

�

2��+�+�+1� −� 3� + 1 3 1 −
2
3

�

=
2�

3�+1
�=0

�−1
2
3

�
2��+�+�+1� −� (9� + 3) 1 −

2
3

�

Let us now consider the sum-

� =
�=0

�−1
2
3

�
2��+�+�+1��

Note that the above sum can be rewritten as follows-

� =
�∈��

2
3

�
2��+�+�+1�� +

�∈��

2
3

�
2��+�+�+1��
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Now, note that ∀ � ∈ ��, 2��+�+�+1 = 21 = 2, and ∀ � ∈ ��,
2��+�+�+1 ≥ 22 = 4.

Thus,

� =
�∈��

2
3

�
2��+�+�+1�� +

�∈��

2
3

�
2��+�+�+1��

≥
�∈��

2
3

�
2�� +

�∈��

2
3

�
4��

=
�∈��

2�+1

3� �� + 2
�∈��

2�+1

3� ��

=
�∈��

2�+1

3� �� +
�∈��

2�+1

3� �� +
�∈��

2�+1

3� ��

=
�∈��∪��

2�+1

3� �� +
�∈��

2�+1

3� ��

=
�=0

�−1
2�+1

3� �� +
�∈��

2�+1

3� ��

Note that the sum-

�' =
�=0

�−1
2�+1

3� ��
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is the sum of the first � terms of a Geometric Progression, starting with
2� and having a common ratio 2

3
. Hence,

�' = 2�
1 −

2
3

�

1 −
2
3

= 6� 1 −
2
3

�

Therefore,

� ≥ 6� 1 −
2
3

�

+
�∈��

2�+1

3� ��

Let,

�� = �, ��� �� ≡ �1, �2, …, �� (���ℎ �� �� ��������)

Thus,

�∈��

2�+1

3� �� = 2�
�∈��

2
3

�

�

= 2�
2
3

�1

+
2
3

�2

+ … +
2
3

��

Note that the above sum achieves its minimum possible value when each
�� obtains its minimum value, which is when �1 = 0, �2 = 1, …, �� =
� − 1 (Since each �� is distinct)

Thus,
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�∈��

2�+1

3� �� = 2�
�∈��

2
3

�

�

≥ 2�
2
3

0

+
2
3

1

+ … +
2
3

�−1

Note that the sum-

�'' =
2
3

0

+
2
3

1

+ … +
2
3

�−1

is the sum of the first � terms of a Geometric Progression, starting with 1
and having a common ratio 2

3
. Hence,

�' = 1
1 −

2
3

�

1 −
2
3

= 3 1 −
2
3

�

Hence,

� ≥ 6� 1 −
2
3

�

+
�∈��

2�+1

3� ��

≥ 6� 1 −
2
3

�

+ 2� 3 1 −
2
3

�

= 6� 1 −
2
3

�

+ 6� 1 −
2
3

�

Thus,
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� =
�=0

�−1
2
3

�
2��+�+�+1�� ≥ 6� 1 −

2
3

�

+ 6� 1 −
2
3

�

Hence,

2�

3�+1
�=0

�−1
2
3

�

2��+�+�+1� −� 9� + 3 1 −
2
3

�

≥
2�

3�+1 6� 1 −
2
3

�

+ 6� 1 −
2
3

�

− 9� + 3 1 −
2
3

�

=
2�

3� 2� 1 −
2
3

�

+ 2� 1 −
2
3

�

− 3� + 1 1 −
2
3

�

Now, note that � = �� ≥ 1. Hence, 1 − 2
3

�
> 1 − 2

3

Also, note that � ≥ 1 and hence, 1 − 2
3

�
> 1 − 2

3

Hence,

2�

3�+1
�=0

�−1
2
3

�

2��+�+�+1� −� 9� + 3 1 −
2
3

�

>
2�

3� 2� 1 −
2
3

+ 2� 1 −
2
3

− 3� + 1 1 −
2
3

=
2�

3� (� − 1)
1
3

=
2�

3�+1 (� − 1) > 0, ∀ �, � ∈ ℕ

Hence,
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2�

3�+1
�=0

�−1
2
3

�

2��+�+�+1� −� 9� + 3 1 −
2
3

�

> 0, ∀ �, � ∈ ℕ

Which implies that-

��+� �, � − �� �, �

=
2
3

�

�=0

�−1
2
3

� 2��+�+�+1

3
− 1 � −

1
3� > 0, ∀ �, � ∈ ℕ

Hence,

∀ � ∈ ℕ, ��+� �, � > �� �, �

The above implies that-

�� �, � < ��+1 �, � < ��+2 �, � < …

Also, if � is chosen such that-

� < log3
2

� − 1
3

Then,

3
2

�

<
� − 1

3
Which implies,

3
3
2

�

< � − 1

Thus,
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� − 1 >
3�+1

2�

Hence,

��+� �, � − �� �, � >
2�

3�+1 � − 1 > 1, ∀ � ∈ ℕ

Which implies that

��+1 �, � − �� �, � > 1

This ensures that lim
�→∞

�� �, � does not converge to a finite limit.

Thus,

lim
�→∞

�� �, � → ∞

But, Claim 2.2.4 suggests-

�� � ≥ �� �, � , ∀ �, � ∈ ℕ

Hence,
�� � ≥ lim

�→∞
�� �, � , ∀ � ∈ ℕ

Thus,
�� � → ∞, ∀ � ∈ ℕ

Thus,

�1 � =
3� + 1

2
→ ∞, �ℎ��ℎ �� �������� ���� �� � → ∞
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Clearly, this is a contradiction. Thus, our assumption must be
incorrect, and thus,

∀ � ∈ ℕ≥�, ∃ � ∈ ℕ ���ℎ �ℎ�� ����
� � < �

This concludes the proof □

Remark

The Collatz Conjecture follows immediately from Theorem 2.2 due to
the principle of mathematical induction. Theorem 2.2 suggests that every
number � ∈ ℕ yields an έ < �. This argument can be used over and over
again to argue that all natural numbers eventually yield 1.

3. PROOF OF THE COLLATZ CONJECTURE

Theorem 3.1

The Collatz Conjecture is true. In other words, if we define the function

����: ℕ → ℕ such that-

���� � ≔
�
2

, �� � �� ����

���� � ≔ 3� + 1, �� � �� ���

Then ∀ � ∈ ℕ, ∃ � ∈ ℕ such that ����
� � = 1

�����

The Collatz Conjecture has been verified to be true for all natural
numbers till an approximate value of 268. This serves as an appropriate
base for an inductive process.
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Let us now assume that the Collatz Conjecture is true ∀ � ∈ ℕ≤�,

� ∈ ℕ.

Thus, ∀ � ∈ ℕ≤�, ∃ �� ∈ ℕ such that

����
�� � = 1

Let us now consider the case of � = (� + 1). Thus, Theorem 2.2
implies that

∃ � ∈ ℕ ���ℎ �ℎ�� ����
� � + 1 < � + 1

This implies that-

∃ � ∈ ℕ ���ℎ �ℎ�� ����
� � + 1 = þ ≤ � (∗∗∗∗)

Also, note that þ ≤ �.Thus, þ ∈ ℕ≤� and hence, ∃�þ ∈ ℕ such that-

����
�þ þ = 1 (∗∗∗∗∗)

Now, from (∗∗∗∗),

����
� � + 1 = þ

Hence,

����
�+�þ � + 1 = ����

�þ þ

But, from (∗∗∗∗∗), ����
�þ þ = 1. Hence,

����
�+�þ � + 1 = 1

Also, note that � + �þ ∈ ℕ. Thus, ∃ ��+1 = � + �þ ∈ ℕ such that-

����
��+1 � + 1 = 1

Implying that the conjecture holds true for (� + 1).
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Hence, by the principle of mathematical induction, if we define the
function

����: ℕ → ℕ such that-

���� � ≔
�
2

, �� � �� ����

���� � ≔ 3� + 1, �� � �� ���

Then ∀ � ∈ ℕ, ∃ � ∈ ℕ such that ����
� � = 1, implying that the

Collatz Conjecture is true!


