A TOPOLOGICAL APPROACH TO THE TWIN PRIMES
AND DE POLIGNAC CONJECTURES

ANTONI CUENCA

ABSTRACT. We introduce a topology in the set of natural numbers via
a subbase of open sets. With this topology, we obtain an irreducible
(hyperconnected) space with no generic points. This fact allows proving
that the cofinite intersections of subbasic open sets are always empty.
That implies the validity of the Twin Primes Conjecture. On the other
hand, the existence of strictly increasing chains of subbasic open sets
shows that the Polignac Conjecture is false.
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1. INTRODUCTION

Let P be the set of prime numbers greater than 2 and N the set of stricly
positive natural numbers.
We begin by introducing in P the topology for which the subsets H,, =
{p € P:p+2m e P} (for every m € N) are a subbase of closed sets. We
will call O,, the complementary open sets of the H,, and X the topological
space we obtain.
We will also consider, now on the set S = {n € N: H, # &}, the topology
generated by the subbase of closed sets Hy = {m € S: p+2m € P} for all
p € P. We will call Oy to the complementary open sets of H; and X* to
the topological space that is obtained.
X and X* turn out to be both irreducible spaces (hyperconnected). In
addition, X is T; (the maximum separation that supports an irreducible
space).
The conjecture of the twin primes is equivalent to the fact that the closed H;
contains an infinity of points and the conjecture of de Polignac is equivalent
to that the same happens to the sets H,,NO,,,_1N...NO; for all the natural
numbers m.

The article focuses on sets ﬂ OZ where I C X due to the fact that there

qel
will be a finite H,, if and only if there exists a cofinite set C' C X such that
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ﬂ O, # 2. Indeed:

qel

ﬂO; # @ < exists m € N (H,, # @) such that for every p € C then

qel
m € O, < exists m € N such that for every p € C then p € O,, & exists

m such that C' C O,,, & exists m such that H,, C X — C which is finite.

We start by proving that m O, is open if and only if I is a finite set. In this
qel

case ﬂO;‘ # & because X* is irreductible. Then (in section 3) we show
qel
that the set ﬂ O, (which turns out to be the set of the generic points of
qgeX
X*) is empty. This tells us that the sets of the form ﬂ O,, where C' is

qeC
cofinite, cannot be dense.

Indeed: @ = ﬂ O, = ﬂ O, N ﬂ O, where ﬂ O, is open because
qgeX qeC qeX—C qeX-C
X — C is finite (it is not empty because X* is irreducible).

In section 4 is introduced the concept of extremal subespace. It is shown

below that such subspaces cannot exist. Next we prove that if ﬂ O, with

q€0n
O,, cofinite, was not empty, because there are no generic points, there should

be an extreme set and so, so this subspace must be empty. As discussed
above, this is equivalent to the fact that, for each m € N such that H,, # @,
H,,, has an infinity of elements and, in particular, this is the case of H; which
proves the conjecture of the twin primes.

Finally, it is shown that H,, N O,,_1 N...N O = & for infinite values of m
and, therefore, the de Polignac’s conjecture is false in an infinite amount of

cases.

2. FIRST PROPERTIES OF TOPOLOGICAL SPACES X AND X*

Let P be the set of the odd prime numbers and N the set of the strictly
positive integers.

For every m € N we consider the subset defined as
On,={peP:p+2m¢ P}
We will denote H,, the complementary set

X—-0,={peP:p+2me P}
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We will call X to the topological space thus obtained. In order to clarify
the notation, we will sometimes write O (m) and H (m) instead of O, and
H,, respectively.

We introduce in X the topology 7 generated by the set of all the O,, as
a subbase ([3]). This means that the open sets of this topology are all the
reunions of finite intersections of the sets O,,, namely all sets of the form

J© @) n...no @)

We start by proving some properties of the topological space (X, )

Proposition 2.1. The space X 1is irreducible.

Proof. Tt is enough to see that the intersection of a finite number of O,,s is
non-empty.

If we have O (m;)N...N O (m,) = & then H (my) U ...UH (m,) = X.
Let p = max {my,...m, }. We know that there are arbitrarily large intervals
of natural numbers that do not contain prime numbers (as an example
of length n — 1 of these intervals we can take [n! + 2, n! +n] N N). More
specifically, for each natural number m there is a prime number ¢ such that
s(q) — q > m where s (q) is the prime number that follows g¢.

In particular, there must be a ¢ such that s(q¢) — ¢ > 2u and, for this
¢, min{j:qe€ H;} > p > my; for every i = 1,...,r or, in other words,
q ¢ H (my) U H (m,) which is a contradiction. O

Proposition 2.2. The space X is T (Fréchet)

Proof. Let p € X. Let’s see that {p} is a closed set. given a j such that
1 < j < p, because GCD (j,p) = 1, there is a A > 1 such that j + \p €
X. In fact, the Dirichlet theorem relative to prime numbers in arithmetic
progressions ([1]; chapter 7) ensures the existence of an infinite amount of
these A.

Forall j=1,..,p—1let v; =min{\A > 1:j+ A\p € X}. We have:

peHG(lJr(ul—l)p)) ﬂ...ﬂH(%(p—l—l—(l/p_l—l)p))

Let g e H (%(1 + (11 — 1)p)) Nn..NH (%(p — 1+ (Vp1 — 1)p)> and sup-

pose that ¢ =7 # 0 (mod p) where i < p and let say that ¢ =i + up, i < p.
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Because ¢ € H (5 (p—i+ (Vi — 1)p)> we have that

q+p—itWpi—lp=itpup+p—i+tpi—p=(p+y)peX
which is absurd because p 4 v,_; > 1. We deduce that it must be ¢ = 0 i.e.

p—1
1
¢ = 0 (mod p) which implies ¢ = p. So that {p} = ﬂ H (5 (j+ (v; — 1)p)>
j=1
which is closed.

(We observe that T is the largest separation that allows an irreducible
space). O

Remark 1: We emphasize that we have proved that every point in X can
be written as a finite intersection of the closed sets H,, that contain it.

Proposition 2.3. For every m € N we have that ﬂ Oxm 1s the set of

AEN
the odd primes that divide m. In particular, if p is a prime number then

ﬂ O)\p = {p}

AeN

Proof. Suppose that p is a prime divisor of m. If p belonged to some H),,

then p+2\m =p (1 + 2)\T) € X which is absurd so that p € ﬂ Oxm
p

AeN
Let’s see now that if p is an odd prime number that does not divide

m then p ¢ ﬂ Oxm- If p does not divide m then GCD(p,m) = 1 and
AEN
so, GCD(p,2m) = 1. Applying again the Dirichlet theorem mentioned in

proposition 2.2, there must be a A such that p+2Am € X, that is, p € Hy,,.
O

Now we introduce a topology 7* in the set S = {m € N : H,, # &} taking
the sets

O, ={meS:p+2m¢ X}

(where p is any prime number) as subbase of open sets. We will call X* to
the topological space thus obtained.

In a similar way to what we have previously done with the space X
we will write Hy = {m € S :p+2m € X} to denote the complementary
sets. Sometimes we will write O* (p) and H* (p) instead of Oy and Hy,
respectively. Let’s start now the study of the space X*.
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Remark 2: Before starting the study of this space, we note that we now
have a new language in order to enunciate the conjectures that are the
object of this paper. Indeed, with this language, the de Polignac conjecture
says that, for all m, the set H,, N O; N ... N O,,_1 has infinite elements and
the twin primes conjecture simply says that the closed set H; is infinite.

Proposition 2.4. X* is an irreducible topological space.

Proof. Again it is sufficient to prove that the intersection of a finite number
of open sets of the form O} is non empty.
Specifically, if qq, ...q, are different primes then

@ g €0 (@) N..NO" (gr)
because if for some j =1, ...r were ¢y - ... - ¢, € H*(g;) then
G+2 ¢ =¢;(1+2¢1-q2 .. G- qr) €X
which is absurd. In fact, if () means ”ideal” then

(o g)NN={Aq1- .- : AEN}CO* (@) N ...NO*(gq,)

Proposition 2.5. We have:
a) If H; C Hy the p=q

b) The subspaces H are irreducible.

Proof. a) If H; C Hy then every m in H; belongs to H, or, in other words,
if p € H,, then g € H,, or, put in other way, {m :p € H,} C{m:q€ H,}

and that implies
(| HnC () Ha

q€EHm pEHm
From remark 1 after proposition 2.2, we deduce that, for every r,

) H={r}

qEHT
and, so, the previous inclusion implies {¢} C {p} or, what is the same,

pP=4q.
b) We must to prove that if 7" and T" are closed sets then H; C T'UT"
implies either Hy C T'or H; C T". We begin proving that if H; C U H* (¢;)
i=1

then there is ¢ such that p = q.
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If Hy C U H™ (¢;) then ﬂ O* (¢;) C O* (p) which means that for all m
i=1 i=1
such that {q¢1,...q.} C O,, we must have that p € O,,, but for all A € N|

{qla QT} C O ()\ql Lt QT)
so that, for all A € N, p € O(Aqy - ... - ¢-) that is p € ﬂ O\t~ ... ).

AeN
By proposition 2.3, the last intersection is equal to {qi, ..., ¢, } and therefore

p=q; for somei=1,...,r
Suppose that Hy € TUT' =

(O (1 )0 .U (pir(ig)) g (O (1 (g0 U (qjs(j))))

and that H ¢ T'. Then there must be a j such that
H: ¢ H*(q;,)U...UH"* (qjs(j)> but, for every i, we have

Hy (B (i) U U (pi ) ) U (' (@) U U H (a,))
This implies that for each i exists a t, (1 <t <r;) such that Hy =
H* (p;,) since we can’t have Hy = H* (q;,). Therefore, for every i,

H;yC H" (p,)U...UH" (p@,(i)) and, finally,
) (H* (pi,) U... U H* (pw)) _7
0J

Proposition 2.6. H,, C H,, if and only if {m} C m where the upper bar
means closure in the space X*

Proof. =)

Suppose that m ¢ m Then there will be pq, ..., p, such that

m € O (p1)N..NO*(p,) and n € H* (py) U...U H*(p,). So, for each
¢t =1,...,7, p; belongs to O,, and there is a j such that p; belongs to H,.
As H,, C H,,, this p; belongs to H,, which is a contradiction with p; € O,,
for every 1 =1,...,r

<)

W C m implies m € m and, therefore, for every p such that m € Oy
we must have that n € Oy or, what is the same, for every p such that n € H}
we must have that m € Hj. That means that, for every p, p € H, implies
p € H,,. In other words, H,, C H,,. O
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Proposition 2.7. {m} = ﬂ H

PEHm
Proof. C)
Obviously, for every p € H,,, we have m € H} and therefore m € m Hj
PEHm
so that
myc () Hy= ()
pEHm, pEHm
D)
Ben e m H}. If n ¢ {m} then will exist qi, ..., ¢ such that
pEHMm,

ne€ O0*(q)N..NO"(¢s) and m € H* (¢1) U...NUH" (¢s). This tell us
that there is an ¢ such that m € H* (¢;), that is such that ¢; € H,,. So, in

particular,we have that n € H* (¢;) because n € ﬂ H. That contradicts

pEHm
the fact that n € O* (¢1) N ... N O* (gs). O

Proposition 2.8. H,,NH, = @ if and only if m € ﬂ O,

peHn,
Proof. We have successively: H,,NH, = @ < H, C O,, < for every p € H,
we must have that p € Oy, < for all p € H,, it must have that m € O, <

me () O;.

pEHN,

O

As an example of this situation, it is easy to see that Hyg N Hy; = @:
suppose that pe H14M Hy7 and check that p cannot be congruent neither with
0 nor whit 1 nor whit 2 (mod 3).

Proposition 2.9. The following conditions are equivalents:

i) I C N is a finite set.

i) ﬂ O™ (p;) is an open non-empty set.

icl
iii) The interior of ﬂ O™ (p;) is non-empty.
iel
Proof. i) = ii) and i) = iii) are obvious (note that in i) = i), ﬂ O* (pi)
el

is not empty because [ is finite and, by proposition 1.4, X* is an irreducible

space). We're going to see iii) = 1).
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If the interior of ﬂO* (p;) is non-empty then there are ¢, ...qs such that
iel
O* (1) N...NO*(gs) C m O™ (p;) or, which is equivalent,
icl

UH* (p;)C H* (1) U ... U H* (¢5) and, therefore, for every i € I we have
iel

that H* (p;) C H* (¢1) U ... U H* (¢s). Using the proposition 2.5, we obtain
that, for every ¢ € I, there is a j (1 < j <'s) such that H* (p;) = H* (¢;).
So that, for every i € I, there is a j (1 < j < s) such that p, = ¢; and so,
{pi:iel} C{q,-...qs} and [ is finite. O

Proposition 2.10. Are equivalent:
i) For every C' C N cofinite, ﬂ O, =2

qeC
ii) For every m € N, the closed set H,, has infinite points.

Proof. i) = ii) If there is a m € N such that H,, is finite then O,, is cofinite
and, nevertheless, ﬂ O, # @ because m € ﬂ O,
q€0m q€0m
Indeed, n € ﬂ O, & n € O for every ¢ € O, & q € O, for every
q€0m
q€ 0, <0, CO,andso, m e ﬂ O, because, obviously O, C O,,.
q€0m
ii) = i) We have that m € O} < ¢ € O,, and so, given any I C X,

m € ﬂ O, < m € Oy for every q € I which is equivalent to g € O, for all

qel
q € I or, what is the same, I C O,,. Now, if there is a cofinite set C' such

that ﬂ O, # 0 andm € ﬂ Oy, then C' C Oy, and, therefore, H,, C X —C

qeC qeC
which is finite. UJ

Remark 3: We observe that if we prove ﬂ O, = 9 for every cofinite C,

qeC
in particular, we will have proven that H; is an infinite set which, as we

have already explained in remark 2 after proposition 2.3, is equivalent to
the Twin Primes Conjecture.
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3. GENERIC POINTS

Remember that a generic punt is one whose singleton is dense.

Proposition 3.1. H,, = 0 if and only if {m} = X* namely if and only if

m 1S a generic point i X*.

Proof. We have that H,, = < O,, = X and this is equivalent to p € O,,
for every p € X or, in other words, m € O, for every p € X. That is the
same as saying that m belongs to all open sets U C X* which is equivalent
to say W = X* since {m} is dense if and only if m belongs to the all open
sets. 0J

We will call Z the set {m € X*: H,, = (}. Let’s see that Z = () namely
X* has no generic points.

Proposition 3.2. 7 = m O,

qeX
Proof. We have m € Z < O, = X & q € Oy, for every ¢ € X & m € O
for every g € X & m € mOZ. O

qgeX

Theorem 3.3. Z = @ namely X* has no generic points or, in other words,
H,, # @ for every m € N

Proof. Let B,, = ﬂ H;N ﬂ O, for each m € X*.

pGHm qeom
() H; ={n:H, CH,} ={m}
pEH,

and
(] 0;={n:0n,CO.}={n:H, CH,}
q€0m
so that B,, = {n: H, = H,,} and is not empty because, at least, m € B,,,

We have:

Bun (VOr=| (YH;n()O;|n[)O;=2n () 0;=0

q€Hm pEHm q€Hm q€0m q€0m

On the other hand,

B,n () 0;= ) H;m(ﬂ 0; N ﬂO;):

q€EHm q€EHm q€EHm q€0m
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=V Hn () 0= () Hn[()O0;={minz

q€EH q€Hp U0, q€EH qeEX*
and therefore, for every m € X*, {m} N Z = @ so that Z = @.

Corollary 3.4. Every even number is the difference of two prime numbers.

Proof. Z = @ means H,, # @ for every m and this implies that, for every
even number 2m, exists a prime number p such that p + 2m is also a prime

number q. So ¢ — p = 2m. 0

Lemma 3.5. Let A, B C N two disjoint sets, then
min (AN B) =min (A) < min(A) € B

Proof. =) is obvious.
<) We always have min (AN B) > (A). If min (AN B) > min (A) then
min (A) ¢ AN B and therefore, min (A) ¢ B. O

Lemma 3.6. For every m € X* there is an open set U such that min (U) =
m

Proof. We will use induction on m.

If m = 1 we have, for example, min (O%) = 1. Suppose the lemma proved
up to m — 1 and let min (U) = m — 1. We know that for every p € X,
min (U N O}) > min (U) = m — 1. We also know that H,_; # @ (theorem
3.3) and for every p € Hy,_1 (namely m — 1 € HY) then min (U NO;) >
min (U) =m — 1 (lemma 3.4) i.e. min (U N O;) > min (U) = m.

If min (U N O;) > min (U) = m for all p € Hy,_y, then m ¢ U N O} to
any p € Hy,_1. This means that for all p € H,,, 1, m € (X* —U) U H} or,
in other words, for all p € Hy,—y1, it m € U then m € H} or, which is the
same, U C ﬂ H* = {m — 1}. But this implies U = X* C {m — 1} which

PEHm
tell us that m — 1 € Z wich contradicts the theorem 3.3. So, must exists
p € Hy,1 such that min (U N O}) = min (U) = m. O

Proposition 3.7. We have:
a) X* is Ty if and only if O,, # O, for every m,n such that m # n.
b) X* is Ty if and only if O,, € O, for every m,n such that m # n.
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Proof. We will show b). The proof of a) is analogous.

X* is not Ty if and only if there are m,n with m # n and such that
n €O, N..NO; forevery py,..p, such that m € Oy N...N Oy . That is
equivalent to that exist m,n with m # n and such that {py,...p.} C O, for
every pi,...p, with {p1,...p,} C O,,. Again, this amounts to that for each
finite set I', I' C O,, implies F' C O,, and that is equivalent to O,, C O,, [

Corollary 3.8. X* is a Ty topological space (Kolmogorov) and, in partic-
ular, by proposition 3.6, m # n = O,, # O,, (or H,, # H,)

Proof. Let m < n be two points of X*. By lemma 3.5, there is an open set U
such that min (U) = m. Then m € U but n ¢ U because n < m = min (U).
O

4. EXTREMALITY

Definition Let I C X. We will say that [ is an extremal set or, simply, an
extremal ifﬂO;‘ # & and O;ﬂﬂO; = ﬂ O, = @ foreveryp € X —1.

qel qel qelU{p}

Proposition 4.1. We have:
a) If()O; # @ then () H; c()O;

qel qeX—1 qel

b) I C X is an extremal set if and only if ﬂ O, # 9 and

qel
M #=0;

qeX -1 qel

Proof. a) If ﬂ H; = & there is nothing to prove. Otherwise,
qeX -1
m € ﬂ H; & m € H, for every ¢ € X — I & q € Hy, for every
qeX—1
ge X -1 X—-1cCH, < 0, c IV Consider ¢,...q. such that
m € O* (¢1)N...NO* (g,). This is equivalent to {q1,...¢.} C O,, and, by (1),
we have that {q, ...q.} C I sothat O* (¢;)N...NO* (qT)ﬁﬂ 0; = ﬂ O, # 9.

qel qel

Therefore, m € ﬂ O,

qel
b) We know that in every topological space, if A is an open set and B
is any set, then AN B C AN B (see [2]; 1.7, prop. 5). In our case this tells
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us that for every p € X — I, we have O; N ﬂOZ C ﬂ O, but this

qel qeIU{p}

last set is empty because [ is an extremal and, so, ﬂ O, C H; for every
qel

p € X —1I, that is ﬂ O, C ﬂ H;. Part a) completes the proof. Let’s see
qel peX—I
the reciprocal of part b).

ﬂ O, = ﬂ H = ﬂ O, C ﬂ H which means that for every m such
qel peX—I qel peX—I
that I C O,, we have that X — I C H,, that is to say that for every m

such that I C O,, we have that I= O,,. If there was p € X — I such that
ﬂ O, # @ then there would be n such that I C I U {p} C O, and

qelU{p}
by the previous observation we have that I = I U {p} = O,, which implies

p € I. This is a contradiction. Therefore, ﬂ O, = foreverype X —1

gelU{p}
and [ is an extremal set. O

Proposition 4.2. [ is extremal < exists n such that I = O,, and ﬂ O; =
q€0n,

{m: O, = O,}.

Proof. =) We have n € ﬂ O, < I C O,. In addition, if I is extremal then
qel

ﬂ O, C H, for every p € X — I which implies that, for every p € X — I, if

qel

I C O,, then p € H,,. Therefore, if I C O,, then X — I C H,,. That means
that, if I C O,, then O,, C I and, so, O,, = I. In short, we must have O,, = I
for every n € ﬂ O, and so, ﬂ O; ={m: 0, = O,}.

q€el qel
<)
m O, # @ because I = O,, and therefore n € ﬂ O, = m O, If there
qel q€0n, qel
was a p € X — I such that ﬂ O, # @ then there should be m that
qelU{p}

ITU{p} C O, but I & ITU{p} C O, and, in particular, I C O,, which
implies m € ﬂ O; and I = O,, € Op, which is absurd.

qel
Definition: If I C X we will call N (/) the set

N(I):{pEX:O;ﬂﬂOZZQ}: pe X: ﬂ O,=9

qel gelU{p}
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We have:

a) If ﬂO; = @ then N (/) = X and reciprocally. Indeed, N (I) = X
qel
implies that ﬂOZ C H, for every p € X, namely ﬂO; C ﬂ H}. But
qel qel peX
m € ﬂ H; < p € Hy, for every p € X which is equivalent to H,, = X and

peX
this is absurd due to the existence of gaps of prime numbers of arbitrary

length.
b) IfﬂO;#@is dense, then N (I) = @. O

qel

Proposition 4.3. If ﬂ O, # @ then ﬂ H; = ﬂ O, and so,
q€X—N(I) qeN(I) q€EX—N(I)
by proposition 4.1, X — N (I) is extremal.

Proof. ﬂ O; # @ implies N (I) # @ because, otherwise,

qEX—N(I)
N 0i=0;=

geX—N(I) qgeX
We have that ﬂ O; C H for all the p € N (I) and so, ﬂ O, C ﬂ H)
qel qel pEN(I)
which implies ﬂ 0, C ﬂ Hj M) because ﬂ H} is a closed set.
qel peN(I) peN(I)

Given that ﬂ O; # @, by the proposition 4.1a), we have that
qEX—N(I)

NHe N o o

geN(I) qgeX—-N(I

Ontheotherhand,N(I)CX—I:>ICX—N(I):>

= () oco= () O*CﬂO*

geX—N(I) qel geX—N(I qel

Therefore, ﬂ O, C ﬂ H; C ﬂ O, C ﬂ O, where inclusions
qel peEN(I) qgeX—N(I) q€el
come, respectively, from (1), (2) and (3). We finally obtain that

Nw- N o

peN(I) g€X—N(I)
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Proposition 4.4. If ﬂ O, # D then I is extremal if and only if

qel
N(I)=X—1.
Proof. We have X — I C N (I) & ﬂO;ﬂO; =gforeverype X -1 <1
qel
is extremal. But if ﬂ O, # @ then X — I C N (I) which is equivalent to
qel
X — I = N (I) because we always have N (I) C X — . O

Proposition 4.5. N (I) = ﬂ H,,
ICOm
Proof. We have I C O,, & m € ﬂ O, and therefore
qel
pE ﬂ H,, < pe H,, for every m € ﬂOzﬁmEHg for every
ICOm, qel
me()0; < 0;n(0;=2<peN(I). O

qel qel

Proposition 4.6. ]fﬂ O, # @ then I is an extremal < [ = U Om

qel I1COm
Proof. By proposition 4.4, I is an extremal if and only if N (I) = X — I
and, by proposition 4.5, N (I) = ﬂ H,,. O
1COm,

Proposition 4.7. If [ C J then N (I) C N (J)
Proof. I C J implies ﬂO; C ﬂO;‘. If p € N(I) then O; N ﬂO; =9

qeJ qel qel
and so O, N ﬂ O, = @ which means that p € N (J). O

qeJ

Proposition 4.8. If (O; # @ and (| O; # @ then X — N (I) is
qel qEX—N(I)

extremal.

Proof. 1f X—N (I) is not extremal then must existsp € X—N (X — N (I))=

N (I) such that m O; # @ but p € N (I) implies m O, =a.

q€(X—N(I))A{p} qelU{p}
However, I C X — N(I) = I U{p} C (X —=N(I)) U {p} and so, & #
(1  O0;c () O; which is absurd. O

ge(X—N(D))U{p} qelu{p}
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Corollary 4.9. ]fﬂ O, # D then ﬂ O,=9
)

qel qEX—-N(I

Proof. Suppose ﬂ O, # @. We have I # X because ﬂ O, #9.
qeX—N(I) el
Be J any set such that J 2 I (such J exists because I # X). Then N (1) C

N(J)=X-N(/)cX-N(I)andso,@# () O;c (] O
qEX—N(I) qEX—N(J)
Therefore, @ # ﬂ O, C ﬂ O, and, by proposition 4.8, X —

geX—N(I) gEX—N(J)
N (J) is extremal. Now, X — N (J) C X — N (/) and since X — N (J) is

extremal and J =0, =X —N(J)C X - N () = O, = I, we must have
that X — N (J) = X — N (I) and so, J = I which is a contradiction. [

Theorem 4.10. There are not extremal sets.

Proof. Suppose I is an extremal. Then ﬂOZ #@and [ = X — N(I) so
iel
that (] O} # @ which is impossible by corollary 4.9. O
qEX—N(I)

Theorem 4.11. For every n € N (such that H, # &), H, is an infinite
set. In particular, Hy is infinite and the Twin Primes Conjecture is true.

Proof. If not, O,, would be cofinite and so, ﬂ O, (which is non empty

q€0n
because n € m O;) is not dense. Indeed, m o, N ﬂ O; =7 = I (see
qEOn qGOn qEHn
proposition 3.3) where ﬂ O, is open because H, is finite. From theorem

q€Hn
4.10, O, is not extremal and thus, O, & X — N (O,,) and, therefore, there is

a p such that p € X — N (O,,) and p ¢ O,,. So we have that ﬂ O, #2

q€0,U{p}

is not dense and O,, & O, U {p}

Iterating this process we will arrive to ﬂ O, # @ and X — {r} =
geX—{r}

X — N (X — {r}) because N (X — {r}) = {r}. This implies that X — {r} is
an extremal set in contradiction with proposition 4.10. [
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Theorem 4.12. The de Polignac Conjecture is false.

Proof. Let’s take any O,. As ﬂ O, # @, by proposition 4.11, ﬂ O, is

q€0, q€0,
dense and, therefore, if p € H,,, we must have ﬂ 0, # 2.
q€0,U{p}
Ifn, € ﬂ O, then O, & Oy, . Iterating this process we get a strict

q€0,U{p}
chain:

O, %0, &0, &0, % ..

which shows that the space X is not noetherian ([4]) and, in particular, by
proposition 3.7, X* is not a T; space. Let’s consider the complementary
chain

H,2H, 2H, 2H, 2 ..
All the n; are different because the H,,; are and so, there must be a k such
that n, > v. We have H, £ H,, which implies H,, NO, C H,NO, = & so
that
H, NO;N0yN..NO0,CH, NO, =
and, therefore

H,, NO;N0;N...00, N0, 1 N..0N0,y 1=

(note that ny > v = ny_; > v which means that the subscript ny_; is either
v or "comes” after v ).

The thesis is derived from remark 2 after the proposition 2.3. 0

Corollary 4.13. There are no gaps of prime numbers of length 2n for
infinite values of n.

Proof. 1t suffices to take v = n; and repeat the previous reasoning indefi-
nitely. O

Note however that, since H,, is always an infinite set if H,, # @, for each
m € N such that H,, # @ there are infinite couples of prime numbers that
differ in 2m units (although, perhaps, they are not couples of consecutive

prime numbers).
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Theorem 4.14. The subspaces ﬂ O, can be classified as follows according

qel
to the size of the set I:

a) If I is finite then ﬂ O, 1s open and reciprocally. What’s more, ﬂ O,
q€el qel
18 dense because X* is an irreducible space.

b) F I is infinite but not cofinite and ﬂO; #+ & then ﬂO;‘ s dense
gel qel
(but not open).
c) If I is cofinite then ﬂ O,=2
qel
On the other hand, there are sets I that are infinite (but no cofinite) and

fullfil that () O; = @.

qel

Proof. a), b) and c) have been demonstrated along the article. Let us see
that there exist sets I such that they are infinite (not cofinite) and such
that () O; = @.

qel
For any prime number p we call ¢ (p) the prime number that follows p. If

p € Hy, we will write oy, (p) to indicate the prime number of Hj, that follows
p. In order to clarify this, since Hy = {3,7,13,19,...}, we have 0 (3) = 5
but o, (3) = 7. Let hy = min (H;) = 3. We will define by recurrence hy, for
each k € N. Considere u, = min {meHy, : m > hy_1}. Then we define:

Uk if Uk # o (hkfl)
hi, =

O (uk) if U = 0 (hk_l)

Let’s do I = {hy, : k € N}. Let’s see that this I satisfies the conditions
1. [ is infinite
2. I is not cofinite

3.ﬂ0;‘:®

qel
1. If u* # o (hy—1) then hy = min{m € Hy : m > hy_1} which is greater

than hy_; by definition. This also happens if uy = o (hx—1) (even more

reason why) because, then,
hi, = o (’Lbk) > U = mln{m € H,:m> hkfl} > hp_1

This tells us that the sequence (hy), oy is strictly increasing and therefore I
is infinite.
2. For any k we have that hy # o (hg_1). Indeed:



18 A. CUENCA

hi =ux =min{m € Hy :m > hy_1}if ux # o (hy_1) and hy = oy (uy) =
ok (0 (hg—1)) if ux = o (hg—1) This tells us that I is not cofinite because
{o(hg): ke N} Cc X — 1.

3. ﬂ O, # @ % there is n such that I C O, < there is n such that

qel
I N H, = @ . But this does not happen for any n given that, by the

construction of I, we have I N H,, # @ to all n. OJ

Proposition 4.15. X* is not a sober space

Proof. If X* were sober, all closed irreducible set must be the closure of a
point (exactly one, to be precise). By proposition 2.5 (b) the closet subspaces
H, are irreducible and therefore we should have that H; = W for some
m. By proposition 2.7, m = ﬂ H; and we have H; = m H;. This
q€EH q€H
implies H; C H; for every ¢ € H,,. Now, by proposition 2.5 (a) we obtain
q = p for every q € H,,. We deduce that H,, = {p} in contradiction to
theorem 4.11. O
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