A TOPOLOGICAL APPROACH TO THE TWIN PRIMES AND DE POLIGNAC CONJECTURES

ANTONI CUENCA

Abstract

We introduce a topology in the set of natural numbers via a subbase of open sets. With this topology, we obtain an irreducible (hyperconnected) space with no generic points. This fact allows proving that the cofinite intersections of subbasic open sets are always empty. That implies the validity of the Twin Primes Conjecture. On the other hand, the existence of strictly increasing chains of subbasic open sets shows that the Polignac Conjecture is false.

Key words: Irreducible (hyperconnected) space, gaps of prime numbers, primes in arithmetic progressions, generic point

1. Introduction

Let P be the set of prime numbers greater than 2 and \mathbb{N} the set of stricly positive natural numbers.
We begin by introducing in P the topology for which the subsets $H_{m}=$ $\{p \in P: p+2 m \in P\}$ (for every $m \in \mathbb{N}$) are a subbase of closed sets. We will call O_{m} the complementary open sets of the H_{m} and X the topological space we obtain.
We will also consider, now on the set $S=\left\{n \in \mathbb{N}: H_{n} \neq \varnothing\right\}$, the topology generated by the subbase of closed sets $H_{p}^{*}=\{m \in S: p+2 m \in P\}$ for all $p \in P$. We will call O_{p}^{*} to the complementary open sets of H_{p}^{*} and X^{*} to the topological space that is obtained.
X and X^{*} turn out to be both irreducible spaces (hyperconnected). In addition, X is T_{1} (the maximum separation that supports an irreducible space).
The conjecture of the twin primes is equivalent to the fact that the closed H_{1} contains an infinity of points and the conjecture of de Polignac is equivalent to that the same happens to the sets $H_{m} \cap O_{m-1} \cap \ldots \cap O_{1}$ for all the natural numbers m.
The article focuses on sets $\bigcap_{q \in I} O_{q}^{*}$ where $I \subset X$ due to the fact that there will be a finite H_{m} if and only if there exists a cofinite set $C \subset X$ such that

[^0]$\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$. Indeed:
$\bigcap_{q \in I} O_{q}^{*} \neq \varnothing \Leftrightarrow$ exists $m \in \mathbb{N}\left(H_{m} \neq \varnothing\right)$ such that for every $p \in C$ then $m \in O_{p}^{*} \Leftrightarrow$ exists $m \in \mathbb{N}$ such that for every $p \in C$ then $p \in O_{m} \Leftrightarrow$ exists m such that $C \subset O_{m} \Leftrightarrow$ exists m such that $H_{m} \subset X-C$ which is finite.
We start by proving that $\bigcap_{q \in I} O_{q}^{*}$ is open if and only if I is a finite set. In this case $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ because X^{*} is irreductible. Then (in section 3) we show that the set $\bigcap_{q \in X} O_{q}^{*}$ (which turns out to be the set of the generic points of $\left.X^{*}\right)$ is empty. This tells us that the sets of the form $\bigcap_{q \in C} O_{q}^{*}$, where C is cofinite, cannot be dense.
Indeed: $\varnothing=\bigcap_{q \in X} O_{q}^{*}=\bigcap_{q \in C} O_{q}^{*} \cap \bigcap_{q \in X-C} O_{q}^{*}$ where $\bigcap_{q \in X-C} O_{q}^{*}$ is open because $X-C$ is finite (it is not empty because X^{*} is irreducible).
In section 4 is introduced the concept of extremal subespace. It is shown below that such subspaces cannot exist. Next we prove that if $\bigcap_{q \in O_{n}} O_{q}^{*}$, with O_{n} cofinite, was not empty, because there are no generic points, there should be an extreme set and so, so this subspace must be empty. As discussed above, this is equivalent to the fact that, for each $m \in \mathbb{N}$ such that $H_{m} \neq \varnothing$, H_{m} has an infinity of elements and, in particular, this is the case of H_{1} which proves the conjecture of the twin primes.
Finally, it is shown that $H_{m} \cap O_{m-1} \cap \ldots \cap O_{1}=\varnothing$ for infinite values of m and, therefore, the de Polignac's conjecture is false in an infinite amount of cases.

2. First properties of topological spaces X and X^{*}

Let P be the set of the odd prime numbers and \mathbb{N} the set of the strictly positive integers.

For every $m \in \mathbb{N}$ we consider the subset defined as

$$
O_{m}=\{p \in P: p+2 m \notin P\}
$$

We will denote H_{m} the complementary set

$$
X-O_{m}=\{p \in P: p+2 m \in P\}
$$

We will call X to the topological space thus obtained. In order to clarify the notation, we will sometimes write $O(m)$ and $H(m)$ instead of O_{m} and H_{m} respectively.

We introduce in X the topology τ generated by the set of all the O_{m} as a subbase ([3]). This means that the open sets of this topology are all the reunions of finite intersections of the sets O_{m}, namely all sets of the form

$$
\bigcup\left(O\left(i_{1}\right) \cap \ldots \cap O\left(i_{n}\right)\right)
$$

We start by proving some properties of the topological space (X, τ)

Proposition 2.1. The space X is irreducible.
Proof. It is enough to see that the intersection of a finite number of $O_{n}, \mathrm{~s}$ is non-empty.

If we have $O\left(m_{1}\right) \cap \ldots \cap O\left(m_{r}\right)=\varnothing$ then $H\left(m_{1}\right) \cup \ldots \cup H\left(m_{r}\right)=X$. Let $\mu=\max \left\{m_{1}, \ldots m_{r}\right\}$. We know that there are arbitrarily large intervals of natural numbers that do not contain prime numbers (as an example of length $n-1$ of these intervals we can take $[n!+2, n!+n] \cap \mathbb{N}$). More specifically, for each natural number m there is a prime number q such that $s(q)-q>m$ where $s(q)$ is the prime number that follows q.

In particular, there must be a q such that $s(q)-q>2 \mu$ and, for this $q, \min \left\{j: q \in H_{j}\right\}>\mu \geq m_{i}$ for every $i=1, \ldots, r$ or, in other words, $q \notin H\left(m_{1}\right) \cup H\left(m_{r}\right)$ which is a contradiction.

Proposition 2.2. The space X is T_{1} (Fréchet)
Proof. Let $p \in X$. Let's see that $\{p\}$ is a closed set. given a j such that $1 \leq j<p$, because $G C D(j, p)=1$, there is a $\lambda>1$ such that $j+\lambda p \in$ X. In fact, the Dirichlet theorem relative to prime numbers in arithmetic progressions ([1]; chapter 7) ensures the existence of an infinite amount of these λ.

For all $j=1, \ldots, p-1$ let $\nu_{j}=\min \{\lambda>1: j+\lambda p \in X\}$. We have:

$$
p \in H\left(\frac{1}{2}\left(1+\left(\nu_{1}-1\right) p\right)\right) \cap \ldots \cap H\left(\frac{1}{2}\left(p-1+\left(\nu_{p-1}-1\right) p\right)\right)
$$

Let $q \in H\left(\frac{1}{2}\left(1+\left(\nu_{1}-1\right) p\right)\right) \cap \ldots \cap H\left(\frac{1}{2}\left(p-1+\left(\nu_{p-1}-1\right) p\right)\right)$ and suppose that $q \equiv i \neq 0(\bmod p)$ where $i<p$ and let say that $q=i+\mu p, i<p$.

Because $q \in H\left(\frac{1}{2}\left(p-i+\left(\nu_{p-i}-1\right) p\right)\right)$ we have that
$q+p-i+\left(\nu_{p-i}-1\right) p=i+\mu p+p-i+\left(\nu_{p-i}-1\right) p=\left(\mu+\nu_{p-i}\right) p \in X$
which is absurd because $\mu+\nu_{p-i}>1$. We deduce that it must be $i=0$ i.e. $q \equiv 0(\bmod p)$ which implies $q=p$. So that $\{p\}=\bigcap_{j=1}^{p-1} H\left(\frac{1}{2}\left(j+\left(\nu_{j}-1\right) p\right)\right)$ which is closed.
(We observe that T_{1} is the largest separation that allows an irreducible space).

Remark 1: We emphasize that we have proved that every point in X can be written as a finite intersection of the closed sets H_{m} that contain it.

Proposition 2.3. For every $m \in \mathbb{N}$ we have that $\bigcap_{\lambda \in \mathbb{N}} O_{\lambda m}$ is the set of the odd primes that divide m. In particular, if p is a prime number then $\bigcap_{\lambda \in \mathbb{N}} O_{\lambda p}=\{p\}$

Proof. Suppose that p is a prime divisor of m. If p belonged to some $H_{\lambda m}$ then $p+2 \lambda m=p\left(1+2 \lambda \frac{m}{p}\right) \in X$ which is absurd so that $p \in \bigcap_{\lambda \in \mathbb{N}} O_{\lambda m}$

Let's see now that if p is an odd prime number that does not divide m then $p \notin \bigcap_{\lambda \in \mathbb{N}} O_{\lambda m}$. If p does not divide m then $G C D(p, m)=1$ and so, $G C D(p, 2 m)=1$. Applying again the Dirichlet theorem mentioned in proposition 2.2 , there must be a λ such that $p+2 \lambda m \in X$, that is, $p \in H_{\lambda m}$.

Now we introduce a topology τ^{*} in the set $S=\left\{m \in \mathbb{N}: H_{m} \neq \varnothing\right\}$ taking the sets

$$
O_{p}^{*}=\{m \in S: p+2 m \notin X\}
$$

(where p is any prime number) as subbase of open sets. We will call X^{*} to the topological space thus obtained.

In a similar way to what we have previously done with the space X we will write $H_{p}^{*}=\{m \in S: p+2 m \in X\}$ to denote the complementary sets. Sometimes we will write $O^{*}(p)$ and $H^{*}(p)$ instead of O_{p}^{*} and H_{p}^{*}, respectively. Let's start now the study of the space X^{*}.

Remark 2: Before starting the study of this space, we note that we now have a new language in order to enunciate the conjectures that are the object of this paper. Indeed, with this language, the de Polignac conjecture says that, for all m, the set $H_{m} \cap O_{1} \cap \ldots \cap O_{m-1}$ has infinite elements and the twin primes conjecture simply says that the closed set H_{1} is infinite.

Proposition 2.4. X^{*} is an irreducible topological space.
Proof. Again it is sufficient to prove that the intersection of a finite number of open sets of the form O_{q}^{*} is non empty.

Specifically, if $q_{1}, \ldots q_{r}$ are different primes then

$$
q_{1} \cdot \ldots \cdot q_{r} \in O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{r}\right)
$$

because if for some $j=1, \ldots r$ were $q_{1} \cdot \ldots \cdot q_{r} \in H^{*}\left(q_{j}\right)$ then

$$
q_{j}+2 q_{1} \cdot \ldots \cdot q_{r}=q_{j}\left(1+2 q_{1} \cdot q_{2} \cdot \ldots \cdot \hat{q}_{j} \cdot \ldots \cdot q_{r}\right) \in X
$$

which is absurd. In fact, if () means "ideal" then

$$
\left(q_{1} \cdot \ldots \cdot q_{r}\right) \cap \mathbb{N}=\left\{\lambda q_{1} \cdot \ldots \cdot q_{r}: \lambda \in \mathbb{N}\right\} \subset O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{r}\right)
$$

Proposition 2.5. We have:
a) If $H_{p}^{*} \subset H_{q}^{*}$ the $p=q$
b) The subspaces H_{p}^{*} are irreducible.

Proof. a) If $H_{p}^{*} \subset H_{q}^{*}$ then every m in H_{p}^{*} belongs to H_{q}^{*} or, in other words, if $p \in H_{m}$ then $q \in H_{m}$ or, put in other way, $\left\{m: p \in H_{m}\right\} \subset\left\{m: q \in H_{m}\right\}$ and that implies

$$
\bigcap_{q \in H_{m}} H_{m} \subset \bigcap_{p \in H_{m}} H_{m}
$$

From remark 1 after proposition 2.2, we deduce that, for every r,

$$
\bigcap_{q \in H_{r}} H_{r}=\{r\}
$$

and, so, the previous inclusion implies $\{q\} \subset\{p\}$ or, what is the same, $p=q$.
b) We must to prove that if T and T^{\prime} are closed sets then $H_{p}^{*}{ }_{r} \subset \cup T^{\prime}$ implies either $H_{p}^{*} \subset T$ or $H_{p}^{*} \subset T^{\prime}$. We begin proving that if $H_{p}^{*} \subset \bigcup_{i=1}^{r} H^{*}\left(q_{i}\right)$ then there is i such that $p=q$.

If $H_{p}^{*} \subset \bigcup_{i=1}^{r} H^{*}\left(q_{i}\right)$ then $\bigcap_{i=1}^{r} O^{*}\left(q_{i}\right) \subset O^{*}(p)$ which means that for all m such that $\left\{q_{1}, \ldots q_{r}\right\} \subset O_{m}$ we must have that $p \in O_{m}$, but for all $\lambda \in \mathbb{N}$,

$$
\left\{q_{1}, \ldots q_{r}\right\} \subset O\left(\lambda q_{1} \cdot \ldots \cdot q_{r}\right)
$$

so that, for all $\lambda \in \mathbb{N}, p \in O\left(\lambda q_{1} \cdot \ldots \cdot q_{r}\right)$ that is $p \in \bigcap_{\lambda \in N} O\left(\lambda q_{1} \cdot \ldots \cdot q_{r}\right)$. By proposition 2.3, the last intersection is equal to $\left\{q_{1}, \ldots, q_{r}\right\}$ and therefore $p=q_{i}$ for some $i=1, \ldots, r$

Suppose that $H_{p}^{*} \nsubseteq T \cup T^{\prime}=$

$$
\left(\bigcap_{i}\left(H^{*}\left(p_{i_{1}}\right) \cup \ldots \cup H^{*}\left(p_{i_{r(i)}}\right)\right)\right) \cup\left(\bigcap_{j}\left(H^{*}\left(q_{j_{1}}\right) \cup \ldots \cup H^{*}\left(q_{j_{s(j)}}\right)\right)\right)
$$

and that $H_{p}^{*} \nsubseteq T^{\prime}$. Then there must be a j such that $H_{p}^{*} \nsubseteq H^{*}\left(q_{j_{1}}\right) \cup \ldots \cup H^{*}\left(q_{j_{s(j)}}\right)$ but, for every i, we have

$$
H_{p}^{*} \subset\left(H^{*}\left(p_{i_{1}}\right) \cup \ldots \cup H^{*}\left(p_{i_{r(i)}}\right)\right) \cup\left(H^{*}\left(q_{j_{1}}\right) \cup \ldots \cup H^{*}\left(q_{j_{s(j)}}\right)\right)
$$

This implies that for each i exists a $t,\left(1 \leq t \leq r_{i}\right)$ such that $H_{p}^{*}=$ $H^{*}\left(p_{i_{t}}\right)$ since we can't have $H_{p}^{*}=H^{*}\left(q_{j_{k}}\right)$. Therefore, for every i, $H_{p}^{*} \subset H^{*}\left(p_{i_{1}}\right) \cup \ldots \cup H^{*}\left(p_{i_{r(i)}}\right)$ and, finally,

$$
H_{p}^{*} \subset \bigcap_{i}\left(H^{*}\left(p_{i_{1}}\right) \cup \ldots \cup H^{*}\left(p_{i_{r(i)}}\right)\right)=T
$$

Proposition 2.6. $H_{n} \subset H_{m}$ if and only if $\overline{\{m\}} \subset \overline{\{n\}}$ where the upper bar means closure in the space X^{*}

Proof. \Rightarrow)
Suppose that $m \notin \overline{\{n\}}$. Then there will be p_{1}, \ldots, p_{r} such that
$m \in O^{*}\left(p_{1}\right) \cap \ldots \cap O^{*}\left(p_{r}\right)$ and $n \in H^{*}\left(p_{1}\right) \cup \ldots \cup H^{*}\left(p_{r}\right)$. So, for each $i=1, \ldots, r, p_{i}$ belongs to O_{m} and there is a j such that p_{j} belongs to H_{n}. As $H_{n} \subset H_{m}$, this p_{j} belongs to H_{m} which is a contradiction with $p_{i} \in O_{m}$ for every $i=1, \ldots, r$
$\stackrel{\Leftarrow)}{\{m\}} \subset \overline{\{n\}}$ implies $m \in \overline{\{n\}}$ and, therefore, for every p such that $m \in O_{p}^{*}$ we must have that $n \in O_{p}^{*}$ or, what is the same, for every p such that $n \in H_{p}^{*}$ we must have that $m \in H_{p}^{*}$. That means that, for every $p, p \in H_{n}$ implies $p \in H_{m}$. In other words, $H_{n} \subset H_{m}$.

Proposition 2.7. $\overline{\{m\}}=\bigcap_{p \in H_{m}} H_{p}^{*}$

Proof. ©)

Obviously, for every $p \in H_{m}$, we have $m \in H_{p}^{*}$ and therefore $m \in \bigcap_{p \in H_{m}} H_{p}^{*}$ so that

$$
\overline{\{m\}} \subset \overline{\bigcap_{p \in H_{m}} H_{p}^{*}}=\bigcap_{p \in H_{m}} H_{p}^{*}
$$

つ)
Be $n \in \bigcap_{p \in H_{m}} H_{p}^{*}$. If $n \notin \overline{\{m\}}$ then will exist q_{1}, \ldots, q_{s} such that
$n \in O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{s}\right)$ and $m \in H^{*}\left(q_{1}\right) \cup \ldots \cap \cup H^{*}\left(q_{s}\right)$. This tell us that there is an i such that $m \in H^{*}\left(q_{i}\right)$, that is such that $q_{i} \in H_{m}$. So, in particular, we have that $n \in H^{*}\left(q_{i}\right)$ because $n \in \bigcap_{p \in H_{m}} H_{p}^{*}$. That contradicts the fact that $n \in O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{s}\right)$.

Proposition 2.8. $H_{m} \cap H_{n}=\varnothing$ if and only if $m \in \bigcap_{p \in H_{n}} O_{p}^{*}$
Proof. We have successively: $H_{m} \cap H_{n}=\varnothing \Leftrightarrow H_{n} \subset O_{m} \Leftrightarrow$ for every $p \in H_{n}$ we must have that $p \in O_{m} \Leftrightarrow$ for all $p \in H_{n}$ it must have that $m \in O_{p}^{*} \Leftrightarrow$ $m \in \bigcap_{p \in H_{n}} O_{p}^{*}$.

As an example of this situation, it is easy to see that $H_{16} \cap H_{17}=\varnothing$: suppose that $p \epsilon H_{16} \cap H_{17}$ and check that p cannot be congruent neither with 0 nor whit 1 nor whit $2(\bmod 3)$.

Proposition 2.9. The following conditions are equivalents:
i) $I \subset \mathbb{N}$ is a finite set.
ii) $\bigcap_{i \in I} O^{*}\left(p_{i}\right)$ is an open non-empty set.
iii) The interior of $\bigcap_{i \in I} O^{*}\left(p_{i}\right)$ is non-empty.

Proof. $i) \Rightarrow i i$) and $i i) \Rightarrow i i i$) are obvious (note that in $i) \Rightarrow i i), \bigcap_{i \in I} O^{*}\left(p_{i}\right)$ is not empty because I is finite and, by proposition $1.4, X^{*}$ is an irreducible space). We're going to see $i i i) \Rightarrow i$).

If the interior of $\bigcap_{i \in I} O^{*}\left(p_{i}\right)$ is non-empty then there are $q_{1}, \ldots q_{s}$ such that $O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{s}\right) \subset \bigcap_{i \in I} O^{*}\left(p_{i}\right)$ or, which is equivalent,
$\bigcup_{i \in I} H^{*}\left(p_{i}\right) \subset H^{*}\left(q_{1}\right) \cup \ldots \cup H^{*}\left(q_{s}\right)$ and, therefore, for every $i \in I$ we have that $H^{*}\left(p_{i}\right) \subset H^{*}\left(q_{1}\right) \cup \ldots \cup H^{*}\left(q_{s}\right)$. Using the proposition 2.5, we obtain that, for every $i \in I$, there is a $j(1 \leq j \leq s)$ such that $H^{*}\left(p_{i}\right)=H^{*}\left(q_{j}\right)$. So that, for every $i \in I$, there is a $j(1 \leq j \leq s)$ such that $p_{i}=q_{j}$ and so, $\left\{p_{i}: i \in I\right\} \subset\left\{q_{1}, \ldots q_{s}\right\}$ and I is finite.

Proposition 2.10. Are equivalent:
i) For every $C \subset \mathbb{N}$ cofinite, $\bigcap_{q \in C} O_{q}^{*}=\varnothing$
ii) For every $m \in \mathbb{N}$, the closed set H_{m} has infinite points.

Proof. $i) \Rightarrow$ ii) If there is a $m \in \mathbb{N}$ such that H_{m} is finite then O_{m} is cofinite and, nevertheless, $\bigcap_{q \in O_{m}} O_{q}^{*} \neq \varnothing$ because $m \in \bigcap_{q \in O_{m}} O_{q}^{*}$.

Indeed, $n \in \bigcap_{q \in O_{m}} O_{q}^{*} \Leftrightarrow n \in O_{q}^{*}$ for every $q \in O_{m} \Leftrightarrow q \in O_{n}$ for every $q \in O_{m} \Leftrightarrow O_{m} \subset O_{n}$ and so, $m \in \bigcap_{q \in O_{m}} O_{q}^{*}$ because, obviously $O_{m} \subset O_{m}$.
ii) $\Rightarrow i)$ We have that $m \in O_{q}^{*} \Leftrightarrow q \in O_{m}$ and so, given any $I \subset X$, $m \in \bigcap_{q \in I} O_{q}^{*} \Leftrightarrow m \in O_{q}^{*}$ for every $q \in I$ which is equivalent to $q \in O_{m}$ for all $q \in I$ or, what is the same, $I \subset O_{m}$. Now, if there is a cofinite set C such that $\bigcap_{q \in C} O_{q}^{*} \neq \emptyset$ and $m \in \bigcap_{q \in C} O_{q}^{*}$, then $C \subset O_{m}$ and, therefore, $H_{m} \subset X-C$ which is finite.

Remark 3: We observe that if we prove $\bigcap_{q \in C} O_{q}^{*}=\varnothing$ for every cofinite C, in particular, we will have proven that H_{1} is an infinite set which, as we have already explained in remark 2 after proposition 2.3 , is equivalent to the Twin Primes Conjecture.

3. Generic points

Remember that a generic punt is one whose singleton is dense.

Proposition 3.1. $H_{m}=\emptyset$ if and only if $\overline{\{m\}}=X^{*}$ namely if and only if m is a generic point in X^{*}.

Proof. We have that $H_{m}=\emptyset \Leftrightarrow O_{m}=X$ and this is equivalent to $p \in O_{m}$ for every $p \in X$ or, in other words, $m \in O_{p}^{*}$ for every $p \in X$. That is the same as saying that m belongs to all open sets $U \subset X^{*}$ which is equivalent to say $\overline{\{m\}}=X^{*}$ since $\{m\}$ is dense if and only if m belongs to the all open sets.

We will call Z the set $\left\{m \in X^{*}: H_{m}=\emptyset\right\}$. Let's see that $Z=\emptyset$ namely X^{*} has no generic points.

Proposition 3.2. $Z=\bigcap_{q \in X} O_{q}^{*}$
Proof. We have $m \in Z \Leftrightarrow O_{m}=X \Leftrightarrow q \in O_{m}$ for every $q \in X \Leftrightarrow m \in O_{q}^{*}$ for every $q \in X \Leftrightarrow m \in \bigcap_{q \in X} O_{q}^{*}$.

Theorem 3.3. $Z=\varnothing$ namely X^{*} has no generic points or, in other words, $H_{m} \neq \varnothing$ for every $m \in \mathbb{N}$

Proof. Let $B_{m}=\bigcap_{p \in H_{m}} H_{p}^{*} \cap \bigcap_{q \in O_{m}} O_{q}^{*}$ for each $m \in X^{*}$.

$$
\bigcap_{p \in H_{m}} H_{p}^{*}=\left\{n: H_{m} \subset H_{n}\right\}=\overline{\{m\}}
$$

and

$$
\bigcap_{q \in O_{m}} O_{q}^{*}=\left\{n: O_{m} \subset O_{n}\right\}=\left\{n: H_{n} \subset H_{m}\right\}
$$

so that $B_{m}=\left\{n: H_{n}=H_{m}\right\}$ and is not empty because, at least, $m \in B_{m}$, We have:

$$
B_{m} \cap \bigcap_{q \in H_{m}} O_{q}^{*}=\left(\bigcap_{p \notin H_{m}} H_{p}^{*} \cap \bigcap_{q \in H_{m}} O_{q}^{*}\right) \cap \bigcap_{q \in O_{m}} O_{q}^{*}=\varnothing \cap \bigcap_{q \in O_{m}} O_{q}^{*}=\varnothing
$$

On the other hand,

$$
B_{m} \cap \bigcap_{q \in H_{m}} O_{q}^{*}=\bigcap_{q \in H_{m}} H_{q}^{*} \cap\left(\bigcap_{q \in H_{m}} O_{q}^{*} \cap \bigcap_{q \in O_{m}} O_{q}^{*}\right)=
$$

$$
=\bigcap_{q \in H_{m}} H_{q}^{*} \cap \bigcap_{q \in H_{m} \cup O_{m}} O_{q}^{*}=\bigcap_{q \in H_{m}} H_{q}^{*} \cap \bigcap_{q \in X^{*}} O_{q}^{*}=\overline{\{m\}} \cap Z
$$

and therefore, for every $m \in X^{*}, \overline{\{m\}} \cap Z=\varnothing$ so that $Z=\varnothing$.

Corollary 3.4. Every even number is the difference of two prime numbers.
Proof. $Z=\varnothing$ means $H_{m} \neq \varnothing$ for every m and this implies that, for every even number $2 m$, exists a prime number p such that $p+2 m$ is also a prime number q. So $q-p=2 m$.

Lemma 3.5. Let $A, B \subset \mathbb{N}$ two disjoint sets, then

$$
\min (A \cap B)=\min (A) \Leftrightarrow \min (A) \in B
$$

Proof. \Rightarrow) is obvious.
$\Leftrightarrow)$ We always have $\min (A \cap B) \geq(A)$. If $\min (A \cap B)>\min (A)$ then $\min (A) \notin A \cap B$ and therefore, $\min (A) \notin B$.

Lemma 3.6. For every $m \in X^{*}$ there is an open set U such that $\min (U)=$ m

Proof. We will use induction on m.
If $m=1$ we have, for example, $\min \left(O_{7}^{*}\right)=1$. Suppose the lemma proved up to $m-1$ and let $\min (U)=m-1$. We know that for every $p \in X$, $\min \left(U \cap O_{p}^{*}\right) \geq \min (U)=m-1$. We also know that $H_{m-1} \neq \varnothing$ (theorem 3.3) and for every $p \in H_{m-1}$ (namely $m-1 \in H_{p}^{*}$) then $\min \left(U \cap O_{p}^{*}\right)>$ $\min (U)=m-1$ (lemma 3.4) i.e. $\min \left(U \cap O_{p}^{*}\right) \geq \min (U)=m$.

If $\min \left(U \cap O_{p}^{*}\right)>\min (U)=m$ for all $p \in H_{m-1}$, then $m \notin U \cap O_{p}^{*}$ to any $p \in H_{m-1}$. This means that for all $p \in H_{m-1}, m \in\left(X^{*}-U\right) \cup H_{p}^{*}$ or, in other words, for all $p \in H_{m-1}$, if $m \in U$ then $m \in H_{p}^{*}$ or, which is the same, $U \subset \bigcap_{p \in H_{m}} H_{p}^{*}=\overline{\{m-1\}}$. But this implies $\bar{U}=X^{*} \subset \overline{\{m-1\}}$ which tell us that $m-1 \in Z$ wich contradicts the theorem 3.3. So, must exists $p \in H_{m-1}$ such that $\min \left(U \cap O_{p}^{*}\right)=\min (U)=m$.

Proposition 3.7. We have:
a) X^{*} is T_{0} if and only if $O_{m} \neq O_{n}$ for every m, n such that $m \neq n$.
b) X^{*} is T_{1} if and only if $O_{m} \nsubseteq O_{n}$ for every m, n such that $m \neq n$.

Proof. We will show b). The proof of a) is analogous.
X^{*} is not T_{1} if and only if there are m, n with $m \neq n$ and such that $n \in O_{p_{1}}^{*} \cap \ldots \cap O_{p_{r}}^{*}$ for every $p_{1}, \ldots p_{r}$ such that $m \in O_{p_{1}}^{*} \cap \ldots \cap O_{p_{r}}^{*}$. That is equivalent to that exist m, n with $m \neq n$ and such that $\left\{p_{1}, \ldots p_{r}\right\} \subset O_{n}$ for every $p_{1}, \ldots p_{r}$ with $\left\{p_{1}, \ldots p_{r}\right\} \subset O_{m}$. Again, this amounts to that for each finite set $F, F \subset O_{m}$ implies $F \subset O_{n}$ and that is equivalent to $O_{m} \subset O_{n}$

Corollary 3.8. X^{*} is a T_{0} topological space (Kolmogorov) and, in particular, by proposition 3.6, $m \neq n \Rightarrow O_{m} \neq O_{n}$ (or $H_{m} \neq H_{n}$)

Proof. Let $m<n$ be two points of X^{*}. By lemma 3.5, there is an open set U such that $\min (U)=m$. Then $m \in U$ but $n \notin U$ because $n<m=\min (U)$.

4. Extremality

Definition Let $I \subset X$. We will say that I is an extremal set or, simply, an extremal if $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ and $O_{p}^{*} \cap \bigcap_{q \in I} O_{q}^{*}=\bigcap_{q \in I \cup\{p\}} O_{p}^{*}=\varnothing$ for every $p \in X-I$.

Proposition 4.1. We have:
a) If $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ then $\bigcap_{q \in X-I} H_{q}^{*} \subset \overline{\bigcap_{q \in I} O_{q}^{*}}$
b) $I \subset X$ is an extremal set if and only if $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ and

$$
\bigcap_{q \in X-I} H_{q}^{*}=\overline{\bigcap_{q \in I} O_{q}^{*}}
$$

Proof. a) If $\bigcap_{q \in X-I} H_{q}^{*}=\varnothing$ there is nothing to prove. Otherwise,
$m \in \bigcap_{q \in X-I} H_{q}^{*} \Leftrightarrow m \in H_{q}^{*}$ for every $q \in X-I \Leftrightarrow q \in H_{m}$ for every $q \in X-I \Leftrightarrow X-I \subset H_{m} \Leftrightarrow O_{m} \subset I^{(1)}$. Consider $q_{1}, \ldots q_{r}$ such that $m \in O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{r}\right)$. This is equivalent to $\left\{q_{1}, \ldots q_{r}\right\} \subset O_{m}$ and, by (1), we have that $\left\{q_{1}, \ldots q_{r}\right\} \subset I$ so that $O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{r}\right) \cap \bigcap_{q \in I} O_{q}^{*}=\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$. Therefore, $m \in \overline{\bigcap_{q \in I} O_{q}^{*}}$
b) We know that in every topological space, if A is an open set and B is any set, then $A \cap \bar{B} \subset \overline{A \cap B}$ (see [2]; 1.7, prop. 5). In our case this tells
us that for every $p \in X-I$, we have $O_{p}^{*} \cap \overline{\bigcap_{q \in I} O_{q}^{*}} \subset \bigcap_{q \in I \cup\{p\}} O_{q}^{*}$ but this last set is empty because I is an extremal and, so, $\overline{\bigcap_{q \in I} O_{q}^{*}} \subset H_{p}^{*}$ for every $p \in X-I$, that is $\overline{\bigcap_{q \in I} O_{q}^{*}} \subset \bigcap_{p \in X-I} H_{p}^{*}$. Part a) completes the proof. Let's see the reciprocal of part b).
$\overline{\bigcap_{q \in I} O_{q}^{*}}=\bigcap_{p \in X-I} H_{p}^{*} \Rightarrow \bigcap_{q \in I} O_{q}^{*} \subset \bigcap_{p \in X-I} H_{p}^{*}$ which means that for every m such that $I \subset O_{m}$ we have that $X-I \subset H_{m}$ that is to say that for every m such that $I \subset O_{m}$ we have that $I=O_{m}$. If there was $p \in X-I$ such that $\bigcap_{q \in I \cup\{p\}} O_{q}^{*} \neq \varnothing$ then there would be n such that $I \subset I \cup\{p\} \subset O_{n}$ and by the previous observation we have that $I=I \cup\{p\}=O_{n}$ which implies $p \in I$. This is a contradiction. Therefore, $\bigcap_{q \in I \cup\{p\}} O_{q}^{*}=\varnothing$ for every $p \in X-I$ and I is an extremal set.

Proposition 4.2. I is extremal \Leftrightarrow exists n such that $I=O_{n}$ and $\bigcap_{q \in O_{n}} O_{q}^{*}=$ $\left\{m: O_{m}=O_{n}\right\}$.
Proof. $\Rightarrow)$ We have $n \in \bigcap_{q \in I} O_{q}^{*} \Leftrightarrow I \subset O_{n}$. In addition, if I is extremal then $\bigcap_{q \in I} O_{q}^{*} \subset H_{p}^{*}$ for every $p \in X-I$ which implies that, for every $p \in X-I$, if $I \subset O_{n}$, then $p \in H_{n}$. Therefore, if $I \subset O_{n}$ then $X-I \subset H_{n}$. That means that, if $I \subset O_{n}$ then $O_{n} \subset I$ and, so, $O_{n}=I$. In short, we must have $O_{n}=I$ for every $n \in \bigcap_{q \in I} O_{q}^{*}$ and so, $\bigcap_{q \in I} O_{q}^{*}=\left\{m: O_{m}=O_{n}\right\}$. $\Leftarrow)$

$$
\bigcap_{q \in I} O_{q}^{*} \neq \varnothing \text { because } I=O_{n} \text { and therefore } n \in \bigcap_{q \in O_{n}} O_{q}^{*}=\bigcap_{q \in I} O_{q}^{*} \text {. If there }
$$ was a $p \in X-I$ such that $\bigcap_{q \in I \cup\{p\}} O_{q}^{*} \neq \varnothing$ then there should be m that $I \cup\{p\} \subset O_{m}$ but $I \varsubsetneqq I \cup\{p\} \subset O_{m}$ and, in particular, $I \subset O_{m}$ which implies $m \in \bigcap_{q \in I} O_{q}^{*}$ and $I=O_{n} \nsubseteq O_{m}$ which is absurd.

Definition: If $I \subset X$ we will call $N(I)$ the set

$$
N(I)=\left\{p \in X: O_{p}^{*} \cap \bigcap_{q \in I} O_{q}^{*}=\varnothing\right\}=\left\{p \in X: \bigcap_{q \in I \cup\{p\}} O_{q}^{*}=\varnothing\right\}
$$

We have:
a) If $\bigcap_{q \in I} O_{q}^{*}=\varnothing$ then $N(I)=X$ and reciprocally. Indeed, $N(I)=X$ implies that $\bigcap_{q \in I} O_{q}^{*} \subset H_{p}^{*}$ for every $p \in X$, namely $\bigcap_{q \in I} O_{q}^{*} \subset \bigcap_{p \in X} H_{p}^{*}$. But $m \in \bigcap_{p \in X} H_{p}^{*} \Leftrightarrow p \in H_{m}$ for every $p \in X$ which is equivalent to $H_{m}=X$ and this is absurd due to the existence of gaps of prime numbers of arbitrary length.
b) If $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ is dense, then $N(I)=\varnothing$.

Proposition 4.3. If $\bigcap_{q \in X-N(I)} O_{q}^{*} \neq \varnothing$ then $\bigcap_{q \in N(I)} H_{q}^{*}=\bigcap_{q \in X-N(I)} O_{q}^{*}$ and so, by proposition 4.1, $X-N(I)$ is extremal.

Proof. $\bigcap_{q \in X-N(I)} O_{q}^{*} \neq \varnothing$ implies $N(I) \neq \varnothing$ because, otherwise,

$$
\bigcap_{q \in X-N(I)} O_{q}^{*}=\bigcap_{q \in X} O_{q}^{*}=Z=\varnothing
$$

We have that $\bigcap_{q \in I} O_{q}^{*} \subset H_{p}^{*}$ for all the $p \in N(I)$ and so, $\bigcap_{q \in I} O_{q}^{*} \subset \bigcap_{p \in N(I)} H_{p}^{*}$ which implies $\frac{q \in I}{\bigcap_{q \in I} O_{q}^{*}} \subset \bigcap_{p \in N(I)} H_{p}^{*(1)}$ because $\bigcap_{p \in N(I)} H_{p}^{*}$ is a closed set.

Given that $\bigcap_{q \in X-N(I)} O_{q}^{*} \neq \varnothing$, by the proposition 4.1a), we have that

$$
\bigcap_{q \in N(I)} H_{q}^{*} \subset \bigcap_{q \in X-N(I)} O_{q}^{*}(2)
$$

On the other hand, $N(I) \subset X-I \Rightarrow I \subset X-N(I) \Rightarrow$

$$
\Rightarrow \bigcap_{q \in X-N(I)} O_{q}^{*} \subset \bigcap_{q \in I} O_{q}^{*} \Rightarrow \overline{\bigcap_{q \in X-N(I)} O_{q}^{*}} \subset \overline{\bigcap_{q \in I} O_{q}^{*}(3)}
$$

Therefore, $\overline{\bigcap_{q \in I} O_{q}^{*}} \subset \bigcap_{p \in N(I)} H_{p}^{*} \subset \overline{\bigcap_{q \in X-N(I)} O_{q}^{*}} \subset \overline{\bigcap_{q \in I} O_{q}^{*}}$ where inclusions come, respectively, from (1), (2) and (3). We finally obtain that

$$
\bigcap_{p \in N(I)} H_{p}^{*}=\bigcap_{q \in X-N(I)} O_{q}^{*}
$$

Proposition 4.4. If $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ then I is extremal if and only if $N(I)=X-I$.
Proof. We have $X-I \subset N(I) \Leftrightarrow \bigcap_{q \in I} O_{q}^{*} \cap O_{p}^{*}=\varnothing$ for every $p \in X-I \Leftrightarrow I$ is extremal. But if $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ then $X-I \subset N(I)$ which is equivalent to $X-I=N(I)$ because we always have $N(I) \subset X-I$.

Proposition 4.5. $N(I)=\bigcap_{I \subset O_{m}} H_{m}$
Proof. We have $I \subset O_{m} \Leftrightarrow m \in \bigcap_{q \in I} O_{q}^{*}$ and therefore
$p \in \bigcap_{I \subset O_{m}} H_{m} \Leftrightarrow p \in H_{m}$ for every $m \in \bigcap_{q \in I} O_{q}^{*} \Leftrightarrow m \in H_{p}^{*}$ for every
$m \in \bigcap_{q \in I} O_{q}^{*} \Leftrightarrow O_{p}^{*} \cap \bigcap_{q \in I} O_{q}^{*}=\varnothing \Leftrightarrow p \in N(I)$.

Proposition 4.6. If $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ then I is an extremal $\Leftrightarrow I=\bigcup_{I \subset O_{m}} O_{m}$
Proof. By proposition 4.4, I is an extremal if and only if $N(I)=X-I$ and, by proposition 4.5, $N(I)=\bigcap_{I \subset O_{m}} H_{m}$.

Proposition 4.7. If $I \subset J$ then $N(I) \subset N(J)$
Proof. $I \subset J$ implies $\bigcap_{q \in J} O_{q}^{*} \subset \bigcap_{q \in I} O_{q}^{*}$. If $p \in N(I)$ then $O_{p}^{*} \cap \bigcap_{q \in I} O_{q}^{*}=\varnothing$ and so $O_{p}^{*} \cap \bigcap_{q \in J} O_{q}^{*}=\varnothing$ which means that $p \in N(J)$.

Proposition 4.8. If $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ and $\bigcap_{q \in X-N(I)} O_{q}^{*} \neq \varnothing$ then $X-N(I)$ is extremal.

Proof. If $X-N(I)$ is not extremal then must exists $p \in X-N(X-N(I))=$ $N(I)$ such that $\bigcap_{q \in(X-N(I)) \cup\{p\}} O_{q}^{*} \neq \varnothing$ but $p \in N(I)$ implies $\bigcap_{q \in I \cup\{p\}} O_{q}^{*}=\varnothing$. However, $I \subset X-N(I) \Rightarrow I \cup\{p\} \subset(X-N(I)) \cup\{p\}$ and so, $\varnothing \neq$ $\bigcap_{q \in(X-N(I)) \cup\{p\}} O_{q}^{*} \subset \bigcap_{q \in I \cup\{p\}} O_{q}^{*}$ which is absurd.

Corollary 4.9. If $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ then $\bigcap_{q \in X-N(I)} O_{q}^{*}=\varnothing$
Proof. Suppose $\bigcap_{q \in X-N(I)} O_{q}^{*} \neq \varnothing$. We have $I \neq X$ because $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$.
Be J any set such that $J \supseteq I$ (such J exists because $I \neq X$). Then $N(I) \subset$ $N(J) \Rightarrow X-N(J) \subset X-N(I)$ and so, $\varnothing \neq \bigcap_{q \in X-N(I)} O_{q}^{*} \subset \bigcap_{q \in X-N(J)} O_{q}^{*}$. Therefore, $\varnothing \neq \bigcap_{q \in X-N(I)} O_{q}^{*} \subset \bigcap_{q \in X-N(J)} O_{q}^{*}$ and, by proposition 4.8, $X-$ $N(J)$ is extremal. Now, $X-N(J) \subset X-N(I)$ and since $X-N(J)$ is extremal and $J=O_{\nu}=X-N(J) \subset X-N(I)=O_{\mu}=I$, we must have that $X-N(J)=X-N(I)$ and so, $J=I$ which is a contradiction.

Theorem 4.10. There are not extremal sets.
Proof. Suppose I is an extremal. Then $\bigcap_{i \in I} O_{q}^{*} \neq \varnothing$ and $I=X-N(I)$ so that $\bigcap_{q \in X-N(I)} O_{q}^{*} \neq \varnothing$ which is impossible by corollary 4.9.

Theorem 4.11. For every $n \in \mathbb{N}$ (such that $H_{n} \neq \varnothing$), H_{n} is an infinite set. In particular, H_{1} is infinite and the Twin Primes Conjecture is true.

Proof. If not, O_{n} would be cofinite and so, $\bigcap_{q \in O_{n}} O_{q}^{*}$ (which is non empty because $n \in \bigcap_{q \in O_{n}} O_{q}^{*}$) is not dense. Indeed, $\bigcap_{q \in O_{n}} O_{q}^{*} \cap \bigcap_{q \in H_{n}} O_{q}^{*}=Z=\varnothing$ (see proposition 3.3) where $\bigcap_{q \in H_{n}} O_{q}^{*}$ is open because H_{n} is finite. From theorem 4.10, O_{n} is not extremal and thus, $O_{n} \varsubsetneqq X-N\left(O_{n}\right)$ and, therefore, there is a p such that $p \in X-N\left(O_{n}\right)$ and $p \notin O_{n}$. So we have that $\bigcap_{q \in O_{n} \cup\{p\}} O_{q}^{*} \neq \varnothing$ is not dense and $O_{n} \varsubsetneqq O_{n} \cup\{p\}$

Iterating this process we will arrive to $\bigcap_{q \in X-\{r\}} O_{q}^{*} \neq \varnothing$ and $X-\{r\}=$ $X-N(X-\{r\})$ because $N(X-\{r\})=\{r\}$. This implies that $X-\{r\}$ is an extremal set in contradiction with proposition 4.10.

Theorem 4.12. The de Polignac Conjecture is false.

Proof. Let's take any O_{ν}. As $\bigcap_{q \in O_{\nu}} O_{q}^{*} \neq \varnothing$, by proposition 4.11, $\bigcap_{q \in O_{\nu}} O_{q}^{*}$ is dense and, therefore, if $p \in H_{\nu}$, we must have $\bigcap_{q \in O_{\nu} \cup\{p\}} O_{q}^{*} \neq \varnothing$.

If $n_{1} \in \bigcap_{q \in O_{\nu} \cup\{p\}} O_{q}^{*}$ then $O_{\nu} \varsubsetneqq O_{n_{1}}$. Iterating this process we get a strict chain:

$$
O_{\nu} \varsubsetneqq O_{n_{1}} \varsubsetneqq O_{n_{2}} \varsubsetneqq O_{n_{3}} \varsubsetneqq \ldots
$$

which shows that the space X is not noetherian ([4]) and, in particular, by proposition 3.7, X^{*} is not a T_{1} space. Let's consider the complementary chain

$$
H_{\nu} \supseteqq H_{n_{1}} \supsetneqq H_{n_{2}} \supsetneqq H_{n_{3}} \supseteqq \ldots
$$

All the n_{j} are different because the $H_{n_{j}}$ are and so, there must be a k such that $n_{k}>\nu$. We have $H_{\nu} \supsetneqq H_{n_{k}}$ which implies $H_{n_{k}} \cap O_{\nu} \subset H_{\nu} \cap O_{\nu}=\varnothing$ so that

$$
H_{n_{k}} \cap O_{1} \cap O_{2} \cap \ldots \cap O_{\nu} \subset H_{n_{k}} \cap O_{\nu}=\varnothing
$$

and, therefore

$$
H_{n_{k}} \cap O_{1} \cap O_{2} \cap \ldots \cap O_{\nu} \cap O_{\nu+1} \cap \ldots \cap O_{n_{k}-1}=\varnothing
$$

(note that $n_{k}>\nu \Rightarrow n_{k-1} \geq \nu$ which means that the subscript n_{k-1} is either ν or "comes" after ν).
The thesis is derived from remark 2 after the proposition 2.3.

Corollary 4.13. There are no gaps of prime numbers of length $2 n$ for infinite values of n.

Proof. It suffices to take $\nu=n_{k}$ and repeat the previous reasoning indefinitely.

Note however that, since H_{m} is always an infinite set if $H_{m} \neq \varnothing$, for each $m \in \mathbb{N}$ such that $H_{m} \neq \varnothing$ there are infinite couples of prime numbers that differ in $2 m$ units (although, perhaps, they are not couples of consecutive prime numbers).

Theorem 4.14. The subspaces $\bigcap_{q \in I} O_{q}^{*}$ can be classified as follows according to the size of the set I:
a) If I is finite then $\bigcap_{q \in I} O_{q}^{*}$ is open and reciprocally. What's more, $\bigcap_{q \in I} O_{q}^{*}$ is dense because X^{*} is an irreducible space.
b) $F I$ is infinite but not cofinite and $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing$ then $\bigcap_{q \in I} O_{q}^{*}$ is dense (but not open).
c) If I is cofinite then $\bigcap_{q \in I} O_{q}^{*}=\varnothing$

On the other hand, there are sets I that are infinite (but no cofinite) and fullfil that $\bigcap_{q \in I} O_{q}^{*}=\varnothing$.

Proof. a), b) and c) have been demonstrated along the article. Let us see that there exist sets I such that they are infinite (not cofinite) and such that $\bigcap_{q \in I} O_{q}^{*}=\varnothing$.
For any prime number p we call $\sigma(p)$ the prime number that follows p. If $p \in H_{k}$ we will write $\sigma_{k}(p)$ to indicate the prime number of H_{k} that follows p. In order to clarify this, since $H_{2}=\{3,7,13,19, \ldots\}$, we have $\sigma(3)=5$ but $\sigma_{2}(3)=7$. Let $h_{1}=\min \left(H_{1}\right)=3$. We will define by recurrence h_{k} for each $k \in \mathbb{N}$. Considere $u_{k}=\min \left\{m \epsilon H_{k}: m>h_{k-1}\right\}$. Then we define:

$$
h_{k}=\left\{\begin{array}{l}
u_{k} \text { if } u_{k} \neq \sigma\left(h_{k-1}\right) \\
\sigma_{k}\left(u_{k}\right) \text { if } u_{k}=\sigma\left(h_{k-1}\right)
\end{array}\right.
$$

Let's do $I=\left\{h_{k}: k \in \mathbb{N}\right\}$. Let's see that this I satisfies the conditions

1. I is infinite
2. I is not cofinite
3. $\bigcap_{q \in I} O_{q}^{*}=\varnothing$
4. If $u^{k} \neq \sigma\left(h_{k-1}\right)$ then $h_{k}=\min \left\{m \in H_{k}: m>h_{k-1}\right\}$ which is greater than h_{k-1} by definition. This also happens if $u_{k}=\sigma\left(h_{k-1}\right)$ (even more reason why) because, then,

$$
h_{k}=\sigma_{k}\left(u_{k}\right)>u_{k}=\min \left\{m \in H_{k}: m>h_{k-1}\right\}>h_{k-1}
$$

This tells us that the sequence $\left(h_{k}\right)_{k \in \mathbb{N}}$ is strictly increasing and therefore I is infinite.
2. For any k we have that $h_{k} \neq \sigma\left(h_{k-1}\right)$. Indeed:
$h_{k}=u_{k}=\min \left\{m \in H_{k}: m>h_{k-1}\right\}$ if $u_{k} \neq \sigma\left(h_{k-1}\right)$ and $h_{k}=\sigma_{k}\left(u_{k}\right)=$ $\sigma_{k}\left(\sigma\left(h_{k-1}\right)\right)$ if $u_{k}=\sigma\left(h_{k-1}\right)$ This tells us that I is not cofinite because $\left\{\sigma\left(h_{k}\right): k \in \mathbb{N}\right\} \subset X-I$.
3. $\bigcap_{q \in I} O_{q}^{*} \neq \varnothing \Leftrightarrow$ there is n such that $I \subset O_{n} \Leftrightarrow$ there is n such that $I \cap H_{n}=\varnothing$. But this does not happen for any n given that, by the construction of I, we have $I \cap H_{n} \neq \varnothing$ to all n.

Proposition 4.15. X^{*} is not a sober space
Proof. If X^{*} were sober, all closed irreducible set must be the closure of a point (exactly one, to be precise). By proposition 2.5 (b) the closet subspaces H_{p}^{*} are irreducible and therefore we should have that $H_{p}^{*}=\overline{\{m\}}$ for some m. By proposition 2.7, $\overline{\{m\}}=\bigcap_{q \in H_{m}} H_{q}^{*}$ and we have $H_{p}^{*}=\bigcap_{q \in H_{m}} H_{q}^{*}$. This implies $H_{p}^{*} \subset H_{q}^{*}$ for every $q \in H_{m}$. Now, by proposition 2.5 (a) we obtain $q=p$ for every $q \in H_{m}$. We deduce that $H_{m}=\{p\}$ in contradiction to theorem 4.11.

References

[1] Apostol, Tom M, Introduction to analytic number theory, Springer Science \& Business Media. 2013
[2] Bourbaki, Nicolas, Topologie générale: Chapitres 1 à 4, Springer Science \& Business Media. 2007
[3] Hart, Klaas Pieter and Nagata, Jun-iti and Vaughan, Jerry E , Encyclopedia of general topology, Elsevier. 2003
[4] Hartshorne, Robi, Algebraic geometry, Springer Science \& Business Media. 2013

[^0]: 2020 Mathematics Subject Classification. Primary 11A41, Secondary 54B05.

