
Guessing that the Riemann Hypothesis is
unprovable

T.Nakashima

Abstract

Riemann Hypothesis has been the unsolved conjecture for 163
years. This conjecture is the last one of conjectures without proof in
”Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse”(B.
Riemann). The statement is the real part of the non-trivial zero points
of the Riemann Zeta function is 1/2. Very famous and difficult this
conjecture has not been solved by many mathematicians for many
years. In this paper, I try to solve the proposition about the Mobius
function equivalent to the Riemann Hypothesis. In this paper, first of
all, I start from the failure of one proof. I guess the independence (un-
proofability) of a proposition equivalent to the Riemann Hypothesis
about the Mobius function. First, the non-trivial result (theorem 1)
regarding the Mobius function is shown. The theorem 2 writes about
the failure of the proof. Then I states in the conjecture 1 that the
Riemann Hypothesis is unprovable (independent).
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Handles a proposition equivalent to the Riemann Hypothesis. The Riemann
Hypothesis is expressed as R.H. µ(n) is the Mobius function.

The following theorem is well known.

theorem .
m∑

n=1

µ(n) = O(m
1
2
+ϵ) ⇔ R.H

This paper deals with this equation on the left.
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Lemma 1. Let γ1 = 14.13 · · · be the smallest of the positive imaginary parts
of the non-trivial zero-point of the zeta function. Let a be an arbitrary real
number. In this condition,

Ma(x) :=

{
0 for x < 0∑

n≤x µ(n)n
−a − 1

ζ(a)
for x ≥ 0

Lets the upper limit of the number of times that the sign is changed below Y
be V (Ma, Y )

lim
Y→∞

V (Ma, Y )

log Y
≥ γ1

π

Proof. ([10] Corollary4).

I use this lemma for
∑x

n=1
1
n
µ(n) and

∑x
n=1 µ(n)(x ≤ m). These functions

have sign changes more than logm × γ1
π

≈ 4.5 logm times. This number
increases for large m. This value is about 31 for m = 1000. Actually I
counted it

∑x
n=1 µ(n)(x ≤ m) up to m = 1000, It changed the sign 35 times.

It shows the accuracy of this lemma.
Furthermore, according to the original paper ([10]), there is a sign change

point included in [Y 1−ϵ′ , Y ] for Y > Y0(ϵ
′), ϵ′ > 0. In other words, it can be

seen that there are enough points to change the sign.

Theorem 1.
m∑

n=1

µ(n) (t.c.
m∑

n=1

m

n
µ(n))

Here, t.c. means that it is too close.

Proof. m0 is the last that satisfies
∑

n≤m0
µ(n) = 0 before m, and m′ is

the first to satisfy
∑

n≤m′ µ(n) = 0 after m. By lemma 1,
∑

n≤m
1
n
µ(n)

and
∑

n≤m µ(n) have enough change sign points. When
∑

n≤m0
µ(n) = 0,

the coefficient changes gemtle. So I get
∑

n≤m0

1
n
µ(n) (t.c. 0). (According

to the example written later, at m0 = 920 m0 satisjies
∑920

n=1 µ(n) = 0 It
means something like

∑920
n=1

920
n
µ(n) ≒ 2.00191 (t.c. 0). ) Especially in this

case, it is necessary to take a larger scale.
∑

n≤m
1
n
µ(n) changes frequent the

sign. Therefore it can be K
m0

> |
∑

n≤m0

1
n
µ(n)|. Since the form of the final

term to be added is 1
m0

µ(m0), This formula is more accurate. In short, it is
0 =

∑
n≤m0

µ(n) (t.c.
∑

n≤m0

m0

n
µ(n)). If you proceed from m0

∑
n≤m

m
n
µ(n)

is
∑

n≤m̄−1
1
n
µ(n) + µ(m̄) changes,

∑
n≤m µ(n) changes µ(m̄), m̄ ≤ m. (

This is less than the amount of the difference between
∑

n≤m′ µ(n) = 0 and∑
n≤m′

m′

n
µ(n) (this is very little). ) Therefore, these two equations are
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roughly equal. (Too close means that the absolute value of
∑

n≤m0

m0

n
µ(n) is

less than the absoliute value of
∑

n≤m µ(n) or
∑

n≤m
m
n
µ(n),m0 ≤ m ≤ m′

for almost all cases.)

example: m = 1000
1000∑
n=1

µ(n) = 2

1000∑
n=1

1000

n
µ(n) ≒ 4.411

m0 = 920
920∑
n=1

µ(n) = 0

920∑
n=1

920

n
µ(n) ≒ 2.00191

920∑
m=1

m−1∑
n=1

1

n
µ(n) ≒ 2.00191

m′ = 1002
1002∑
n=1

µ(n) = 0

1002∑
n=1

1002

n
µ(n) ≒ 2.41969

example: m = 10000
10000∑
n=1

µ(n) = −23

10000∑
n=1

10000

n
µ(n) ≒ −20.827

m0 = 9256
9256∑
n=1

µ(n) = 0

9256∑
n=1

9256

n
µ(n) ≒ 3.62119
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9256∑
m=1

m−1∑
n=1

1

n
µ(n) ≒ 3.62119

m′ = 11117
11117∑
n=1

µ(n) = 0

11117∑
n=1

11117

n
µ(n) ≒ 0.414323

These results means
∑m

n=1 µ(n) <
∑m

n=1
m
n
µ(n).

example: m = 100000
100000∑
n=1

µ(n) = −48

100000∑
n=1

100000

n
µ(n) ≒ −48.7228

example: m = 1000000
1000000∑
n=1

µ(n) = 212

1000000∑
n=1

1000000

n
µ(n) ≒ 200.605

example: m = 10000000

10000000∑
n=1

µ(n) = 1037

10000000∑
n=1

10000000

n
µ(n) ≒ 1015.24

These results means
∑m

n=1 µ(n) >
∑m

n=1
m
n
µ(n). The common result is∑m

n=1 µ(n) ≈
∑m

n=1
m
n
µ(n)

I saw like in this theorem 1, I haven’t figured out why
∑m

n=1 µ(n) and∑m
n=1

m
n
µ(n) values are close for a long time. The answer is exactly

∑m0

n=1 µ(n) =
0 and

∑m0

n=1
m0

n
µ(n) are close. The difference between the two expressions

are caused by |
∑m0

n=1
m0

n
µ(n)−

∑m0

n=1 µ(n)|, the amount of change is different
a little, but the two equations are almost same at m. This is the reason why
the values of the two equations are close.
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Theorem 2. R.H. cannot be proved by my method.

Proof. I start from
m∑

m̃=1

m̃−1∑
n=1

1

n
µ(n) (t.c. 0)

(Theorem 1). For m0 ≤ M < m
∑m

m̃=M

∑m̃−1
n=1

1
n
µ(n), M is enough close to

m, it is almost equal to m−M
m

times of
∑m

n=1
m
n
µ(n). The following 2 patterns

are established in the process of proof, so I can not decide which of these is
correct. I can’t prove it.
Pattern A

|
m∑

n=1

m

n
µ(n)| < Km

1
2
+ϵ (1)

in the case of.

|
m∑

n=1

1

n
µ(n)| < Km− 1

2
+ϵ (2)

Is true. ∫ m

M

Kx− 1
2
+ϵdx = 2Km

1
2
+ϵ − 2KM

1
2
+ϵ

As an approximate expression (2Km
1
2
+ϵ − 2KM

1
2
+ϵ)/(

∑m
n=1

m
n
µ(n)) ≥

(2Km
1
2
+ϵ − 2KM

1
2
+ϵ)/Km

1
2
+ϵ ≈ m−M

m
holds.

2Km
1
2
+ϵ − 2KM

1
2
+ϵ ≥ m−M

m
|

m∑
n=1

m

n
µ(n)| (3)

It is a characteristic of this pattern that (1), (2), (3) hold, and these do not
contradict each other.
Pattern B

|
m∑

n=1

m

n
µ(n)| ≥ Km

1
2
+ϵ (4)

in the case of.

|
m∑

n=1

1

n
µ(n)| ≥ Km− 1

2
+ϵ (5)

Is true.

2Km
1
2
+ϵ − 2KM

1
2
+ϵ ≤ m−M

m
|

m∑
n=1

m

n
µ(n)| (6)

The characteristic of this pattern is that (4), (5), (6) hold. Pattern A and
Pattern B completely stalled the proof. If there is hope, these two patterns
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may be a model of so-called ”independence”.
Let’s take a look at

∑
n≤m µ(n).

∑m
m̃=1

∑m̃−1
n=1

1
n
µ(n) has a negative effect

on the calculation.

| −
m∑

m̃=1

m̃−1∑
n=1

1

n
µ(n) +

m∑
n=1

m

n
µ(n)| < or ≥ Km

1
2
+ϵ

|
∑
n≤m

µ(n)| < or ≥ Km
1
2
+ϵ

got.

To use it later, let us develop the so-called ”non-standard analysis”. We
assume that you already know the basics of non-standard analysis. I take
Frechet filter

F0 = {A ⊂ N|N\A is a finite set}

and let take the maximal filter (⊃ F0) as the Ultra-filter. Write this as F
and fix it hereafter.

RN = {(a1, a2, a3, · · · )|ai ∈ R}

(a1, a2, a3, · · · ) ∼ (b1, b2, b3, · · · ) ⇔ {k ∈ N|ak = bk} ∈ F

I get RN/ ∼=∗ R. I want to handle hypernatural numbers and infinity ,so I
consider ∗N ⊂∗ R.

∞0 := [(1, 2, 3, · · · )] ∈∗ N

∞1 := [(K1
1
2
+ϵ, K2

1
2
+ϵ, K3

1
2
+ϵ, · · · )] ∈∗ R

∞2 := [(2K1
1
2
+ϵ, 2K2

1
2
+ϵ, 2K3

1
2
+ϵ, · · · )] ∈∗ R

The magnitude relation for hyperreal numbers is

[(a1, a2, a3, · · · )] ≤ [(b1, b2, b3, · · · )] ⇔ {k ∈ N|ak ≤ bk} ∈ F

and the natural number n is represented by

n = [(n, n, n, · · · )]

Then
∀n ≤ ∞0,∞1,∞2

Therefore, ∞0,∞1,∞2 are all larger than any natural number, that is, satisfy
the condition of infinity. With this premise, I make the following predictions.
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conjecture 1. The Riemann Hypothesis is unprovable. In other words, the
Riemann Hypothesis is independent in the axiomatic system.

In pattern A or pattern B, the composition is very beautiful. Therefore
I guess that the Riemann Hypothesis is unprovable. This is sufficient con-
sidering that many people in the past have failed to prove and have been
unresolved. It’s a possible story. Let the whole axiomatic system be ZFC
and pattern A be Φ1. If pattern B contains even one example and is not
empty, we will write it as Φ2 = ¬Φ1. In the range of natural numbers, I
suppose Φ1 is true in ZFC. Consider the hypernatural number here. This
axiomatic system is represented as S. When the definition formula of the
sum of the Mobius function is naturally extended as |

∑
n≤∞ µ(n)| can take

any fixed value. Let’s take this value ∞2, using our carefully prepared non-
standard analysis here. In addition, let ∞1 be the value of Km

1
2
+ϵ at infinity.

Then I get ∞1 ≤ ∞2 at m = ∞0 . Φ2 is true. At such times, the Riemann
Hypothesis is unprovable and ”independent” from theory. The reason why I
used non-standard analysis is to convince myself that such a case certainly ex-
ists. A more intuitive explanation without using non-standard analysis. For
example from m = P − 3 to m = P if Φ2 is true |

∑m
n=1

m
n
µ(n)| ≥ Km

1
2
+ϵ

holds. I take P → ∞. You can see ∞ = ∞(at ∞). (Pattern B seems to
have disappeared. This defines

∑
n≤N µ(n) as a fixed value at a certain N ,

there is no contradiction. This corresponds to the case where the sum of the
Mobius functions is conveniently used. Of course, the sum of the Mobius
functions that had shifted was not my starting point. It does not fit the
formula equivalent to the Riemann Hypothesis. It is essential that ∞, which
does not raise the issue, can be an example of Φ2. ) Of course, it is possible
that the Riemann Hypothesis can be proved or disproved. However, it is
quite possible that the Riemann Hypothesis is unprovable. I want to think
that the Riemann Hypothesis is unprovable.

2 Other open issues

I will write about problems in which infinity is likely to be a problem, such
as the Collatz conjecture and the Goldbach conjecture.

conjecture 2. (Colatz conjecture)
If the natural number n is odd, multiply it by 3 and add 1. If it is even,
divide by 2. Then this calculation always goes to 1 regardless of n.

For this Collatz conjecture, consider the hypernatural numbers and con-
sider the calculation when n = ∞. For example For ∞0 = [(1, 2, 3, · · · )],
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Division and multiplication don’t work unless you define them well. Divide
by 2 for even elements, multiply by 3 and add 1 for odd elements. If the
usual Collatz conjecture is correct, then all the elements finally come down
to 1 or 2 or 4. And this is (by definition of Ultra-filter) 1 = [(1, 1, 1 · · · )] or
2 = [(2, 2, 2 · · · )] or 4 = [(4, 4, 4 · · · )]. Obviously, it will be the usual Collatz
conjecture.

conjecture 3. (Goldbach conjecture)
The double 2n of the natural number n can be written as the sum of two
different prime numbers.

Consider hypernatural numbers for this Goldbach conjecture and con-
sider the calculation when n = ∞. For example 2∞3 = [(4, 6, 8, · · · )] =
[(p1, p2, p3, · · · )]+ [(q1, q2, q3, · · · )]. This also reduces to the Goldbach conjec-
ture for the general even 2n.

Special thanks: I was very grateful to my friend H. Tokitu for translating in
English. I would like to express my gratitude to him.
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