The Proofs of Legendre’s Conjecture and Related Conjectures

Wing K. Yu

Abstracts

In this paper, we are going to prove Legendre’s Conjecture: There is a prime number between
n? and (n + 1)? for every positive integer n. We will also prove several related conjectures. The
method that we use is to analyze a binomial coefficient. It has been developed from the method
of analyzing a central binomial coefficient that was used by Paul Erdés to prove Bertrand’s

postulate / Chebyshev’s theorem.
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1. Introduction

Legendre’s Conjecture was proposed by Andrien-Marie Legendre [1]. The conjecture is one of
Legendre’s problems (1912) on prime numbers. It states that there is a prime number between
n? and (n + 1)? for every positive integer n.

In this paper, we will prove Legendre’s Conjecture by analyzing the binomial coefficient (’Z‘)
where A is a positive integer. It is developed from the method that was used by Paul Erdés [2]

to prove Bertrand’s postulate / Chebyshev’s theorem [3].

In Section 1, we will define the prime decomposition operator and clarify some terms and
concepts. In Section 2, we will derive some lemmas. In Section 3, we will develop a theorem to
be used in the proofs of the conjectures in the later sections. In Section 4, we will prove
Legendre’s conjecture, and in Section 5, we will prove Oppermann’s conjecture [4], Brocard's
conjecture [5], and Andrica’s conjecture [6].

Definition: I};.,.,{n} denotes the prime number decomposition operator. It is the product of
the prime numbers in the decomposition of a positive integer n or a positive integer expression.
In this operator, p is a prime number, a and b are real numbers,andn>a>p>b>1.

It has some properties:

It is always true that Iy»p>p{n} 2 1. —(1.1)

If no prime number in [y5,.{n}, then Tpxp.p{n} = 1, or vice versa, if T2, {n} = 1, then no
prime number in Tpsp.p{n} asin Tpsp.0 {12} = 11°.70- 50 = 1. —(1.2)
If there is at least one prime number in Fa2p>b{n}, then Fa2p>b{n} > 1, or vice versa, if
Tazpsp{n} > 1, then there is at least one prime number in Ty .p{n}asin Iyyp.,{12} =3 > 1.
—(1.3)
Similar to Paul Erd8s’ paper [2], we define R(p) by the inequalities pR® < An < pR®+1 and

determine the p-adic valuation of (’m).
(A-Dn

vy () = 5 (G = 1, = D) =, u) = 2 (|57 = [57] = [ ] < e

because for any real numbers a and b, the expression of |a + b| — |a| — | b] is O or 1.

in
Thus, if p divides ()Zl), then v, ((’11?)) <R(p) <log,(An), or pvp((n )) <pR® < in —(1.4)
Andif An2p > [\/ﬂj, then 0 < v, ((’11?)) <R(p)<1 — (1.5)

Let 11(n) be the number of distinct prime numbers less than or equal to n. For the first six

sequential natural numbers, there are three prime numbers 2, 3, and 5. For counting any
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successive set of six sequential natural numbers, there are at most two prime numbers added,

p =1(MOD 6) and p =5 (MOD 6). Thus, 1t(n) < EJ+2 < g+2. Since some of n =1 (MOD 6) and

n =5 (MOD 6) are not prime numbers, as the number counts increase, Ti(n) reduces from EJ+2.

Forn 224, it(n) < EJ+1 < §+1 —(1.6)
From the prime number decomposition,

my (n)! . (an)! . (an)!
when n > |Vin], (n) - F/‘lnzp>n{n!_((/1_1)n)!} F"2p>lml{n!-((,1—1)n)!} Flﬂ_ngp{n!-(u_l)n)!}

1 (n)! (an)!
whenn < [Vin], (1) € Cinzpontsy i mosdt Tlvmfen ot
Finspon——y - =2y Gince all pri bers in ! do not in th
mzp>n oo = Dinepen 20, since all prime numbers in n! do not appear in the

range of An>p > n.

Referring to (1.5), ">P>Nm{ } < IIn=p p. It has been proved [7] that for n > 3,

n!-((A- 1)n)'

[Inz>pp <2273 Thus, T,

, n>p>[\/rnj{—n, 7 1)n),} Hn>pP<22" 3.

(n)! +
Referred to (1.4) and (1.6), F[\/ﬂPp{nn o 1)n)'} (An) 3 7" when [Van| > 24.
n (/17’1)! _ @4_1
Thus, for n >3 and |Van| > 24, (n) < szpm{m} 2203 (n) s —(1.7)
2. Lemmas
2(2x-1 x
Lemma 1: If a real number x > 3, then (2x—1) > ( X ) —(2.1)
x—1 x—1
Proof:
_ 2(2x 1) , 2(x-1)(2x-1)" -2(2x-1)(x— 1)’ -2
Let f1(x) = , then f; (x) = D = G <0.
Thus f;(x) is a strlctly decreasing function for x > 1.
Since f;(3)=5and lim filx) =4,
2(2x-1
thus, 52 f;(x) = (2x— )>4forx23. —(2.1.1)
xy! I\ In—=2— !
Let f5(x) = ( ) then f,'(x) = ((x 1) )= (ex nx—l) =¥ M -(x-lnx’_c—l)
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F 0= () (o5 (05)) = () (e 2250

fo' (x) = (i1 (ln—— L) —(2.1.2)

N@212), ==+t F— —(2.1.3)

2 x3 x4 x5 x6

2 4

3 5 6
Using the formula: In(1 + x)= x—x?+x?—x—+x——x—+ , we have
x 1 -1 1 1
1nxj_1n1+_71_—1n(1 )=t 3x3 + 4x4 + st + 6x6 + - — (2.1.4)
Thus forx >3, In— — ) —(2.1.5)
x—1 x-1
. X x. ey ! _ x \* x 1
Since (;) is a positive number for x >3, f, (x) = (;) . (ln; - x—_l) <0. —(2.1.6)

Thus f,(x) is a strictly deceasing function for x > 3.

Since f,(3) =3.375and lim f,(x) =e =2.718,
X—00

X
thusforx >3, 3.3752 f,(x) = (ﬁ) >e=~2718 —(2.1.7)

Since for x 23, f;(x) has a lower bound of 4 and f,(x) has an upper bound of 3.375,

2(2x 1) _
filx) = > fr(x) = ( = ) is proven. —(2.1.8)
n Aﬂn—)&l
Lemma2:Forn>2and 123, ( n ) > (- 1)(—Dn=A+1 —(2.2)
Proof:
When A>3 andn=2,
Any_ 21y _ 24(2A-1)(24-2)!
( n )=(5)= 22— A(22-1) —(2.21)
AAn-2+1 124-2+1 AA—1 A
— - o =2 () —(22.2)
n(l—l)(’l 1)n—A+1 2(/1_1)2(/'1 1)—-A+1 2 A-1
B 2(21-1) 2\
In (2.1) when x = 1 2 3, we have Py > (/1_1) —(2.2.3)
. AA-1) | - . A(A-1)
Since is a positive number for A > 3, referring to (2.2.1) and (2.2.2), when

multiplies to both sides of (2.2.3), we have
A An—-A+1
A(A-1 2(214—-1 A(A-1 A A
(( ))(( ))=/1(2/1—1)=(’1n)>(( ))( )= —
2 A-1 n 2 -1 n(A-1)A-1n-21+1
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Aln—l+1

Thus, (A7) > when123and n=2. —(2.2.4)

n(/l—l)(’l_l)n_’“'l
AAn—2A+1

By induction on n, when A > 3, if (’}f) > is true for n, then for n+1, we have

n(l—l)(/l_l)n_/l"'l

(A(n+1)) _(An+7L _ (An+A)(An+1-1)--(An+2)(An+1) _(/ln)
n+1 n+1 (An+1-n-1)(An+A1-n—-2)--(An—-n+1)(n+1)
An+1) (An+2)(An+2-1)-(An+2)(An+1) A=A+
n+1 (An+l—n—1Xln+l—n—2}u0n—n+1Xn+1) n(A-1)A-1n-1+1
A(n+1) (An+2)(An+21-1)-(An+2) ntl 1 A=A+
n+1 (An+l—n—1Xln+l—n—2}wﬂn—n+1) n  (n+1) (A-1)A-Dn-1+1
. An+1 (An+A)(An+1-1)--(An+2) a-1)
N >
otice A, and (An+A-n—-1)(An+A1-n—-2)---(An—-n+1) (A 1)
) Intd A AntA-1 A Ant2 A
CANSE mtAn—1 A-1’ IntA-n-2 A-1'  In-n+1 A-1°
A1 2 1 AAn—A+1 24 (n+1)-2+1
Thus (A0 1) —(2.2.5)

n+1 A-1DAD "1 (n+1) (A—1)@-Dn-2+1 = (n+1)(A—1)A-Dn+D-2+1

AAn—A+1

From (2.2.4) and (2.2.5), we haveforn>2and A 2 3, ();11) > -1 @-Dn-2+1

Thus, Lemma 2 is proven.

3. A Prime Number between (A —1)n and An

Proposition:
For n > (1 —2) 2 24, there exists at least a prime number p such that (1 —1)n<p <An. —(3.1)

Proof:

Whenn > (1-2)in(1.7),sincen+1=/(n+2)n+1>Vin, [\/AnJ is an integer at most one
less than (n + 1). Thus, n > [\/Anj and (1.7) is valid forn > (1 —2) > 24.
From (1.7) and (2.2), when n 2 (41 —2) 2 24, we have

qAn—A+1 n <T (An)! n—3 XZ£+1
n(;{_l)()l—l)n—)L+1 ( ) /1n>p>n{((/1 1)n)'} "2 *(An) 3 .

Aln—l+1

Dinspsni—e—} - 22773 - (2 T, Since () > 1> Land 2273 » 1
(=) A-Dn-A+1 < Anzp>n\(G 1o (An) .Since (An) 3 >1an >1,
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o [ (=1 [ 2\ (=)
An-A+1 22 ((T) (E) )

(An)!
F)anp>n{((/1_1)n)! } > Ny = Jan

(An) 3 *1 52n-3 _n(/l_l)(l—1)n—a+1 (An)T-"z

yl
Referring to (2.1.7), (ﬁ) >e,

B (k) N (o

> = fz(n, 1) —(3.2)
“m N Ny 3
(1-1)n) (An)%“ (/m%n

Let x = (y —2) 2 24, where both x and y are positive real numbers, and

2" <(y41) ")(x_l)_2(x+2)2'<(x:_1)'e>(x_1) 2(x+2)2'((i_1)-e>(x_1)

thus F)lnzp>n{

f3(x,¥) = x = —>fa(x) = 23 —(3.3)
(xy)g“ CTT I T Ce(e+2)y 7
fi' GO = fi(0) - (— ()5 -G+ 2) - -5 ) = 00 (@)
where f:(x) =— S+ In (XH) + 4; — ﬁ — —ln(x (x+2))— Q — 3(;2)
f ,(x) _ 4x+6 x%+2x-2 7 5
- (x) =

D2+ 2)? | sx@in@+2) | 3x2 | 3(xt2)2
Thus, f5(x) is a strictly increasing function for x > 24.

Whenx =24, 300 = 2o+ In(B7) 45 - B - Tin(@0) - S In24 +2) - - 2> 0,

thus, for x > 24, fs(x) > 0.
Then, f,'(x) = f,(x) - fs(x) >0and f,(x) is a strictly increasing function for x > 24.

2 (25\%3 53
wh 24, £, (x) 2-(26) (7) "™ 2.6606E+31
en x = X)= >
14 2441, 7.6484E+28

(24-26) 3
2y2. <(y%1) ‘ e)(x—l)

> 1, thus for x > 24, f, (x) > 1.

Thus, when x = (y =2) 2 24, f5(x,y) = > fo(x) > 1. —(3.4)

NEZ
(xy) 3

of (xy) -

= fey) - (I () +1- 2% Zn<yx> DD ofy) fny)  —(35)

- el Ny 2_

where fg(x,y) = ( ) +1- PV -In(yx) — 3\/_ ~
0feCy) _ V¥ \/_ Y Y _,_ >0

ox 12xvx 2xVx 6xvx | 6xVx
Thus, fg(x,y) is a strictly increasing function for x >y —2 > 24.
When x = (y -2) 2 24, f,(x, y)>ln(26 1)+ 1 —% In(24 - 26)_F_22_4>0'

2

Thus, f3a( 2 = fz(x,y) - fe(x,y) > 0. f5(x,y) is a strictly increasing function for x >y —2 > 24,
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(24-1)

26—1
When x =y —23 24 ( )>2'262'(( 2 )e)  26606E+31
enx=y=2224, f3(xy)2 2426, 7.3274E+28
(24 -26) 3
_ (x—1)
o () o
Thus, forx >y —22>24, fi(x,y) = T > 1. —(3.6)
(xy) 3 *°

Let n=|x|and A = |y], referring to (3.2), when n > (1-2) > 24,

e )

we have ['};,5,s >1 — (3.7
Anzp n{(()l—l)n)! oy e (3.7)
An)!
In F,1nzp>n{((/1(_;l))n)‘, L p2ntl=vnZ+2n+1> J(m+ 2)n 2 |VAn]. Referring to (1.5), we
(n)!
have 0 < v, (FMZPW{((A—T)@! }) <R(p) <1.

(An)! _

_ (m)! i=A-2 (an)! (An)!
= F/mzzm(a—nn{(()l 1)n),} [Ti1 (F(A—il)n n{——"— e 1)n)'} Can_ G- 1)”{—((1—1)11)1})

l+1 i+1 i+1

_ (An)!
In H)L 2 (F(/’L— m, An
=1 m{«ﬂ Hn)!

numerator (An)! has the form of (i)! - p’. It also has the same form of (i)! - p!in the

}), every distinct prime number p in this range in the

| | _ om)
denominator ((4 — 1)n)!. Thus, referring to (1.2), Hf:lz (F(’l‘il)”_ l)_‘:ll{((a Tll)n)' })

Therefore, whenn >4 —2 > 24,

(An)!

Pyl (n)! i= /'l 2 (An)!
Fln2p>n{((/1_1)n)! }= FAn2p>(A—1)n{((A Hn)! } l_[ (Finl ()LlJrll)n{(()L Dn)! }) >1

— (3.8)

An)!
From (1.1), Dipspsa-1nf5 <1 2 1and [z} 2<F/1n @a-pnf (An)

e 2wy m}>21,andin(3,s)

((ﬂ 1) n)!
at last one of these two parts is greater than 1.

Whenn2>1—2224,if F/lnzp>(z—1)n{%} > 1, then referring to (1.3), there exists at least
a prime number p such that (1 — )n < p < An. — (3.9)
If H (Fi_r; >p> (AL+11)n{—((A_1)n)! }) =1, then Fln2p>(/1—1)n{—((/1_1)n)! } >1. (310)
l /1 2 (An)! ) (An)!
If (FL,Y; op (,11:1),1{—((/1_1)71)!} > 1, then at least one factor Fi% o> (AHll)n{—(@_l)n)!} >
An)! A=2_ 24
When a factor Fi% 2ps (AL+11)n{m} 1, let Y, q= — — ,theny; ;2 72 — . We have
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A-2 24 . .
}>1.Thus, when y; ., 2 12 1 there exists at least a prime

r (An)!

/'lyl-+12p>(/1—1)yi+1{((/1—1)11)!

number p suchthat (A — 1) * ;41 <P <A Yisq

Sincen>y;,q1 > % > i2+—41 , there exists at least a prime number p such that (1 — 1)n<p < An.
(An)!

(A-1D)n)!

(An)!

((A-Dn)!
Referring to (1.3), there exists at least a prime number p such that (1 — 1)n < p < An.

P An)!
Thus, If ]_[:;’—1l 2([‘,1_11> >(,1-1)n{ (4n)

2P s (=D }>1 —(3.11)

}) >1, then FAn2p>(A—1)n{

Referring to (3.7), (3.9), (3.10), and (3.11), then [}, (21— 1)nd }>1whenn>1-22>24.

Thus, (3.1), the Proposition, is proven. It becomes a theorem: Theorem (3.1).

4. The Proof of Legendre’s Conjecture

Legendre’s Conjecture states that there is a prime number between n2 and (n + 1)? for every
positive integer n. —(4.1)

Proof:

Referring to Theorem (3.1), for integers j > k — 2 > 24, there exists at least a prime number p
such that j(k — 1)<p< jk. —(4.2)
When k=j+1226,thenj=k—1225

Applying k =j +1into (4.2),then j2<p <j(j +1)< (j + 1)?

Letn=j 225, thenwe have n?<p < (n+ 1)% — (4.3)

For 1 <n <24, we have a table, Table 1, that shows Legendre’s conjecture valid. — (4.4)

Table 1: For 1 < n < 24, there is a prime number between n? and (n + 1)2.

n 1 2 3 4 5 6 7 8 9 10 11 12
n? 1 4 9 16 25 36 49 64 81 100 | 121 | 144
p 3 5 11 19 29 41 53 67 83 103 127 | 149
(n+ 1)? 4 9 16 25 36 49 64 81 100 | 121 | 144 | 169
n 13 14 15 16 17 18 19 20 21 22 23 24
n? 169 | 196 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576
p 173 | 199 | 229 | 263 | 307 | 331 | 373 | 409 | 449 | 491 | 541 | 587
(n+1)% | 196 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576 | 625

Combining (4.3) and (4.4), we have proven Legendre’s conjecture.
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Extension of Legendre’s conjecture

There are at least two prime numbers, p,, and p,, , between j? and (j + 1)? for every positive
integer j such that j2 < p,, < j(j+1) and j(j+1) < p,, < (j + 1)? where p,, is the nt"* prime number,
Pm is the m*" prime number, and m > n +1. — (4.5)
Proof:

Referring to Theorem (3.1), for integers j > k — 2 > 24, there exists at least a prime number p
such that j(k —1)<p< jk.

When k —1=j > 25, then j(k — 1) = j2 < p, < jk = j(j+1). Thus, there is at least a prime number
p, suchthat j% <p, <j(j+1) when j =k —1225.

When j =k —2>25,then k =j + 2. Thus, j(k —1) = j(j+1) < pm < jk =j (j+2) < (j + 1) 2. Thus,
there is at least another prime number p,, such that j(j+1) < p,, < (j + 1) when j = k —2 > 25,
Thus, when j > 25, there are at least two prime numbers p,, and p,,, between j2 and (j + 1)?

such that j2 < p,, < j(j+1) < pm < (j + 1)?> where m > n +1 for p,, > p,, . — (4.6)

For 1 <j <24, we have a table, Table 2, that shows (4.5) valid. —(4.7)

Table 2: For 1 < j < 24, there are 2 prime numbers such that j? < p, < j(j+1) < pp,, < (j + 1)2.

j 1 2 3 4 5 6 7 8 9 10 | 11 | 12
52 1 4 9 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144
Pn 2 5 11 | 19 | 29 | 41 | 53 | 67 | 83 | 103 | 127 | 149
J(j+1) 2 6 12 | 20 | 30 | 42 | 56 | 72 | 90 | 110 | 132 | 156
Pm 3 7 13 | 23 | 31 | 43 | 59 | 73 | 97 | 113 | 137 | 163
G+D2 | a4 9 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | 169
j 13 | 14 [ 15 | 16 | 17 | 18 [ 19 | 20 | 21 | 22 | 23 | 24
52 169 | 196 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576
DPn 173 | 199 | 229 | 263 | 393 | 331 | 373 | 409 | 449 | 491 | 541 | 587
jj+1) | 182 | 210 | 240 | 272 | 306 | 342 | 380 | 420 | 462 | 506 | 552 | 600
P 191 | 211 | 251 | 277 | 311 | 349 | 389 | 431 | 467 | 521 | 557 | 613
G+1)2 | 196 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576 | 625

Combining (4.6) and (4.7), we have proven (4.5). It becomes a theorem: Theorem (4.5).
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5. The Proofs of Three Related Conjectures

Oppermann’s conjecture was proposed by Ludvig Oppermann [4] in March 1877. It states that
for every integer x > 1, there is at least one prime number between x(x —1) and x?, and at
least another prime between x?2 and x(x+ 1). —(5.1)

Proof:

Theorem (4.5) states there are at least two prime numbers, p,, and p,,, , between j2 and

(j + 1)? for every positive integer j such that j2 < p, < j(j+1) and j(j+1) < pm < (j + 1)? where
m2n +1.

Jj(j+1) is a composite number except j = 1. Since j? < p,, < j(j+1) is valid for every positive
integer j, when we replace j with j+1, we have (j + 1)? <p, < (j+1)(j+2).

Thus, we have j(j+1) < p, < (j + 1)2< p, < (j+1)(j+2). — (5.2)
When x > 1, then (x — 1) 2 1. Substitute j with (x — 1) in (5.2), we have

x(x — 1)< pp < X% <p, < x(x+1) —(5.3)
Thus, we have proven Oppermann’s conjecture.

Brocard's conjecture is named after Henri Brocard [5]. It states that there are at least 4 prime
numbers between (p,,)? and (p,4+1)?, where p,, is the n* prime number, for every n > 1.

— (5.4)
Proof:

Theorem (4.5) states there are at least two prime numbers, p,, and p,,, , between j2 and

(j + 1)? for every positive integer j such that j2 < p, < j(j+1) and j(j+1) < pm < (j + 1)?

where m 2 n +1. When j > 1, j(j+1) is a composite number. Then Theorem (4.5) can be written
as j2 <p, < j(j+1) and j(j+1) <pm < ( + D

In the series of prime numbers: p;=2, p,=3, pP3=5, p4=7, ps=11... all prime numbers except p;

are odd numbers. Their gaps are two or more. Thus when n > 1, (p41— Dn) 2 2.
Thus, we have p,, <(p, +1)< pPp+1 Whenn > 1. — (5.5)

Applying Theorem (4.5) to (5.5), when n > 1, we have at least two prime numbers p,,;, Pm2in
between (p,,)? and (p, + 1)? such that (p,)? < pm1 < Pp(Prtl) < Pmz < (P, + 1)?, and at least
two more prime numbers P,,3, Pma in between (p, + 1)% and (p,.41)? such that

(P, + D?<Pm3 < Prs1(Pntl) <Pma < (P,1)° -

Thus, there are at least 4 prime numbers between (p,,)? and (p,,41)? for n > 1 such that
(Pn)? <Pm1 < Pr(Patl) < Pmz < (P, + 1D? <Pz < Prat( Pntl) < Pma < (P, 1)? — (5.6)

Thus, Brocard's conjecture is proven.
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Andrica’s conjecture is named after Dorin Andrica [6]. It is a conjecture regarding the gaps
between prime numbers. The conjecture states that the inequality m - \/E < 1 holds for
all n where p,, is the nt" prime number. If g,= p,.1 - P, denotes the nt" prime gap, then
Andrica’s conjecture can also be rewritten as g, <2,/ p, + 1. — (5.7)

Proof:

From Theorem (4.5), for every positive integer j, there are at least two prime numbers p,, and
Pm between jZ and (j + 1)? such that j2 < p,, < j(j+1) < Py, < (j + 1) where m > n +1.

Since m2n +1, we have p,;, 2 P41

Thus, we have j2 < p, . — (5.8)
And ppiq < P < ( + 12 —(5.9)
Since j, pn , Pns1 @and (j + 1) are positive integers,

j<Pn — (5.10)

And / pps1<j+1 — (5.11)

Applying (5.10) to (5.11), we have / P41 <+/ Pn + 1. — (5.12)
Thus, / Pns1 —+/ Pn <1 holds for all n since in Theorem (4.5), j holds for all positive integers.

Using the prime gap to prove the conjecture, from (5.8) and (5.9), we have
Gn= Pns1—Pu<(+1)?>—j2=2j+1 From(5.10), j </ p,.
Thus, gn = Pn+1 = Pn <2y Pn+1l. —(5.13)

Thus, Andrica’s conjecture is proven.
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7. Appendix

Q&A

Q: Why does it need to define the prime number decomposition operator?

A: The prime number decomposition operator I';.,.p{n} is needed because it has the
properties that if I';5p., {n} = 1, then there is no prime number less than or equal to a but
greater than b; and that if ;> {n} > 1, then there exists at least one prime number less than
or equal to a but greater than b. In this operator, n is an integer, p is a prime number, a and b
are real numbers,and n>a >p > b > 1. Thus, one can determine immediately whether a prime
number exists in a certain range with this operator.

(An)!

Q: What is the logic in the proof of FAn2p>n{ }s>i1fornz(1-2)2247

((A-1)n)!
%} > f3(n,A) forn > (1 —2) = 24. Then to replace f3(n, 1)

with f5(x,y) to make a continuous function.
Second, to prove that if x = (y =2) = 24, then f;(x, y) > 1.

A: First, to prove F/‘lnzp>n{

: , _0f3(xy)
Third, to prove if x > (y =2) > 24, then f;(x,y) > 1 by showing ot 0. Thus f5(x,y) > 1 for
x2(y-2)224.
Forth, let n = [x] and A = [y] in f3(x, y), thus, to prove f;(n, 1) > 1for n > (1 —2) > 24 also
(n)!
F;an;»n{m} > fs(n, ) > 1.

The send and third steps are similar to integer conduction: major premise, to prove that
f5(n, 1) >1forn=(A—2)=24; minor premise, to prove that if f;(n,1) > 1, then
f3((n + 1),4) >1; conclusion, thus f;(n,4) > 1forn > (1 —-2) > 24.
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