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Abstract

After understanding that there is a simple Modular Algebra that can help in un-
derstanding Power Problems, and the fact that the FLT can be presented onto
the Cartesian Plane via a Symmetric Condition lead to a special construction, 2
methods of proof will be presented:

1) A solving method via equations, can work for any n but of course can be proved
solving by radicals the equations till the case n = 6, and numerically further
on (tha is not elegant at all), but it shows, intuitively, the reason why any case
n > 2 produce the same known result: no integer triplets can be found.

The aim of this work is to present in another following article another

2) Smarter method based onto my Complicate Modular Algebra (can be already
seen onto the picture of the previous proof) proving all the case n > 3 simply
looking to the properties of the constuction, shown by the involved Sums.
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Preface:

Point.1: A new way to understand if a Number P is a Power of an In-
teger p

Before entering into the proof it is necessary to take a look to what I used to
recognise Powers from Numbers:

what I call the Complicate Modulus Algebra, or CMA.

The basic concerning comes from long time ago, the fact that given a integer
P = p2 then it is a Square of an Integer p, IF and only IF:

P = p2 = 1 + 3 + 5 + ....+ 2p− 1

So we can write the Squares of the Integers (n = 2) as:

p2 =

p∑
X=1

(2X − 1)

So in the CMA modular point of view:

if and only if P is the square of p ∈ N, then we can represent it via a Sum of p
Odds, plus Zero Rest.

Then we can generalize the concept to all n − th Power of Integers, using the
Telescoping Sum Property where I use X instead of i for a good reason you will
see hereafter:

pn =

p∑
X=1

(Xn − (X − 1)n)

Where I've called: Mn,X = (Xn − (X − 1)n) the Complicate Modulus since this
function exactly cut numbers are Powers of Integers with Rest Zero.

ON the folowing picture is immediately clear that the slice's thickness Linearly
Rise for n = 2 just, following the function we call the Compliacte Modulus for
Squares: M2 = (2X − 1)

As example, in the following picture How to Cut the Salami of Length P ∈ N in

the case we take the Complicate Modulus for Square, so M2 = (2X − 1). Where

more in general p is the Integer Root of the Generic Number P we are studying.

Or, using the known Floor operator:

p = ⌊(P 1/n)⌋
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Figure 1: How to recognise a Square of an Integer P = A2 from a Non Square of an Integer
P ̸= A2 where Rest must be in this case lower than 2A + 1. Pls ref. to my Vol.1 for more
details. −A− take the place of −p− from now due to old choices will be taken by Fermat.

We can see we can distinguish 2 case:

a) P is a perfect Square, so we have No Rest, but i�

b) P is not a perfect Square, than we have a Rest.

This is a very simple modular concept where the Modulus is not just a Num-
ber but a known function will be very usefull as sson as we proceed in study-
ing it's properties, expecially because the aim of the enteir work and proof is to
NOT use the Abstract Algebra so the very di�coult Abstract Math language of
Fields, Rings etc... (of course one know this concept can apply them arriving at
the same results).

For more details I've produced a Vol.1 (link at the end) with all you need to un-
derstand more on this easy concept.
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Point.2: Complicate Modulus Algebra on the Cartesian Plane:

We need now to tap a forgotten gap between Sum and Calculus, and to be short
for expert readers:

Fixed an Abscissa X = A, it's Ordinate on the Parabola Y = X2, it's equal,
from the known Calculus, to the area of it's 1srt derivative, Y ′ = 2X till X = A:

Figure 2: Known Calculus returning the value of Area below the 1st Derivative till an Integer
A, it's equal to A2

In a similar way the Telescoping Sum property, as seen in the most simple exam-
ple for Square,

via the Complicate Modulus M2 = (2X−1) produce the Odd Numbers (1, 3, 5, 7..., 2i−
1) that can be represented on a Cartesian Plane in the form of Rectangular
Areas called from now Gnomons de�ned, till a more general de�nition will be
given in the next chapters, by:

Base=1 (�xed value) : Height= M2 = (2X − 1)

Where the i-th Gnomon's height is M2,i = (2i− 1).

A new reference line, produced by the function Y = Mn,X will be usefull to be
presented as the 1st integer Derivative.
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Representing the Gnomons on the Cartesian plane, and showing how they're
connected to the Area of the Derivative of Y = Xn (for example) I need to
change the Label's Index, from i to X since i becomes, as told, the i-esim Gnomon
we are talking of:

A2 =
A∑

X=1

(2X − 1)

I'll use the uppercase A from now on, since this work started in this way in 2008,
from the Fermat's A, B, C letters, of his most famous equation.

Here on the graph you can see how the Gnomons square the Linear 1st Deriva-
tive Y ′ = 2X, and what I call from now on: the Integer Derivative Function

Figure 3: Gnomons squaring the 1st, or following, Derivatives, means they represent the same
Area between Same Limits
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Here the example of how a power Y = X3, can be represented squaring its deriva-
tive Y ′ = 3X2 via Gnomons (Red Columns width=1), following what I call
Complicate Modulus Height (Black Lines):

Figure 4: Gnomons squaring the 1st, derivative of Y = X3 thanks to the Telescoping Sum
Property.

This characterization of the Prabolas (also of higher degree in the same way) is
the key of all my work.

It is clear that the 1st Integer derivative is not other than the Complicate Moduls
Function, for Integer Gnomons Step, Base = 1, but we immediately generalize
the concept for Rational Bases too.

All this will not require proof for expert readers, but I of course give them onto
my Vol.1.
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Point 3: Telescoping Sum and the Balancing Point BP

Figure 5: Below the 1st Linear Derivative the Balancing Point BP is exactly in the Middle of
any Gnomon, so at a Rational Abscissa Xm,i ∈ Q− N if we choose 1 as Base, so as the Inte-
gration Step

For n = 2 the 1st Derivative is linear, so it's clear what happens:

- it cuts the Roof of the rectangular Gnomons exactly in the middle,

so we have that for each Gnomon: r = q and Yr = Yq

So the Exceeding area A+ is exactly equal to the missing Area A−, not just in
value, but also in shape (triangular), so they have both the same Base, here 1/2
and the same Height, here equal to Yr = Yq = 1.

It's also clear that the Gnomon's Roof Height is given by the 2Xi − 1 formula is
always an integer Value, for each Integer Xi,

Calling: Balancing Point the intersection between the 1st Derivative and the
Gnomon's Roof. It has coordinate: (Xmi

, Yi) where, if Xi −Xi−1 = 1:

Xm,i =
(Xi +Xi−1)

2
=⇒ Xm,i ∈ Q− N
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The fact the the Medium Point Xm,i it's equal to the Balancing Point BP is due
to the Linear First Derivative.

This is no longer true for n > 2, and that is the key we will show will prove the
FLT.

But since all what I wrote till now is based on the Telescoping Sum Property,
that can be seen as the property of the Curves of the type Y ′ = nXn−1 to be
squared by Rectangular Gnomons, so having a certain Point, I've called the Bal-
ancing Point BP , that lies on the 1st derivative, and is the one for what:

The Missing Left (Red) Area (A−) will equate the Exceeding one (A+).

And of course this comes from an Integral equation compare the two Areas: A+ =
A− I'll show hereafter.

We �rst start to calculate the Abscissa Xm that satisfy this condition, then we
must now discover who is the Balancing Point BP , to prove it has Always
Irrational Abscissa Xm,i if we have a Curved First Derivative, so if n > 2.

We aready know now that the Height Ym,i is the Integer (for now) Height of our
Gnomons, so it is: Ym,i = Mn,xi

that is, for example in the case n = 3 equal to:

Y3,i = M3,i = (3X2 − 3X + 1)X=i = 3X2
i − 3Xi + 1
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Figure 6: Where the Balancing Point is onto a Curved 1st derivative

How to calculate Xm,i:

To calculate Xm,i we have to write and solve the equation: A+ = A− and we can
distinguish in two case: n = 2 so when the First Integer derivative y′ = 2X − 1 is
linear, and n > 2, so when the First Integer Derivative Y ′

I = (Xn − (X − 1)n) is a
Curve.

Except for n = 2 the 1st Derivative is a curve, so we need to use the Integral to
solve the Balancing Equation:

A+ = A−

That becomes in general:

(Xm,i −Xi−1) ∗ ymi
−
∫ xm,i

xi−1

nxn−1 =

∫ xi

xm,i

nxn−1 − (xi − xm,i) ∗ ymi

Still if we know how to solve it, we need to make many other concerning on our
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Complicate Modulus Algebra, before prove that Xm,i it's always an Irrational if
n > 2 and that will be the goal of this �rst part of this paper.

After that we will have all the knowledge necessary to try to prove more compli-
cate problems involving Power's of Integers, like Fermat the Last, but also Euler
and Beal too (I've called the Power Problems).

We note that for n > 2 due to the Curved derivative, must be Xm ̸= Xi−1+Xi

2
so

must be r > q.

And to prove Xm,i is always an Irrational if n > 2 I'll follow 2 ways, both will
look in how BP is geometrically �xed.

- the �rst one involve simple concerning on the relative position of BP respect
to known things: the Medium (or Center) Point MP ,

- the second one will show that we can pack Xm,i between Two Following Inte-
gers, and then Between Two Following Rationals depending by the factor 1/K,
and then we can continuously rise K ab in�nitum, so we can push the divisor
K → ∞ in what is known as Limit,

and just at that point we will rise Xm,i, therefor it is an Irrational by Dedekind
de�nition. But to do that we need to show how we can play with Rational Gnomons,
and this will require a new Chapters hereafter.

This process is known as Dedekind Cut. It sound strange, but I will prove it.

For now what we can immediately see is that:

- due to the Telescoping Sum Property, without making other concerning than
the one involving Integer Numbers and Proportional Areas, for any Parabolas
Y = aXn in any Derivative (also the following) the Exceeding Area A+ will
equate the Missing one A−, ,

- But once we ask how much the value of such areas is the only way, for n > 2 to
calculate them is to go in�nitesimal and make the integral as I'll prove soon, but
just after hacking the Sum Operator to let it works with Rational Step too.
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Point 4: The Step Sum or how forcing the Sum operator to work with
a Scaled Rational Index

Figure 7: The telescoping Sum property allow one to Use or Cut the Base of the Gnomons re-
specting just the condition that it must rise the Upper Limit we have, via a �nite Number of
Step, if we use a �nite Sum, or as we will see after, the Integral, if we will push its division to
the Limit moving Step=dx

Since we need to prove what in the previous chapters I've called the "In�nite
Descent" trough the Convergent Series it's time to hack the Sum Operator. And
this will be the MAIN POINT of All This WORK.

Is known it is possible to indicate bellow the Sum operator not just a rising In-
dex i equal to an integer, but also an Index i selected by a Function that de�ne
just some Special Value that has to be Summed. Most common is the choice of
Prime Number only, or just Odd or Even, etc... But always i was considered to
be an Integer mute variable just.

And this was a Big Mistake because lie us blind for several hundred years.

what is known is that the Step = 1 is the integer di�erence between two follow-
ing Integers i and i+ 1 for example having Index = 1, so it is:
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Step = (i+ 1)− (i) = 1

But it's well known, for example, that is possible to Sum Odds just, or Primes
just, or any other value de�ned by a pre-de�ned Function it will select Integer
Index values i ∈ N just. So the value of the Step can be no longer equal to the
Index is just an integer Number indicate where the pointer is, from Lower to
Upper Limit.

Moreover it's possible, under the conditions will follows, in the special case the
Telescoping Sums Property holds true, so for example in case of Parables, so in
the case the result of the Sum is Y = Xn. We will take for example the Sum:

A2 =
A∑

X=1

(2X − 1);A ∈ N+

I start with the most simple case: Step = Rational Step = 1/K with K ∈ N+

Remembering we want to hold the same result A2 just unsing a more �ne Step
Sum, having Step 1/K, now we can introduce a Scale Factor 1/K2 and a Mul-
tiplier K2, so we divide all the terms of our Sum by K2 , but remembering that
since we wanna left Unchanged the Result, for the known Sum's Rules we have
to multiply by K2, that is equal to multiply the Upper Limit by K too, so we
have:

A2 =
A2

K2
∗K2 =

A∗K∑
X=1

(
2X

K2
− 1

K2

)
Pls see the Appendix.1 of my Vol.1 to see the collection of Known Sum proper-
ties to refresh some of their properties, if necessary.

Now, pls be open mind, and remember what is often done to solve some integral:
we make an exchange of variable, so I'll call: x = X/K , so changing X with
X = x ∗K, if we respect the following conditions:

a) if and only if a = A/K ∈ Q so if K perfectly divide the Upper Limit A (since
we have to stop there indipendently by the number of Step we did).

- the Upper Limit A ∗K becomes: (A/K) ∗K = A (with K ∈ N+ )

- the Lower Limit X = 1 becomes: x = 1/K (a Rational for now) so:

A2 =

(A/K)∗K∑
x=1/K

(
2(x ∗K)

K2
− 1

K2

)
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Now we can simplify to have our new Step Sum, that moves of a quantity de-
pends on the original Integer Index X = 1, 2, 3, 4.... but of a new scaled value x
we call Step is 1/K,

so the Step Sum starts from 1/K and moves to the Upper Limit A Step x =
1
K
, 2
K
, 2
K
, .... 2

K
, ....A, that is now allowed to be A = P/K so A ∈ Q+:

A2 =
A∑

x=1/K

(
2x

K
− 1

K2

)

He we start with: A ∈ N but we can now also use A = P/K ∈ Q

Figure 8: From this picture I hope it's clear what happens: we are just scaling the abscissa
(K = 2 in that case), so we divide in 2 Each Base of Each Gnomon and, as consequence, we
have to modify each Height respecting the rule: Missing Area equal to the Exceeding one, Liv-
ing the Result of the Sum Unchanged.
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It's intuitive for n = 2 since the Linear derivative Y ′ = 2X helps us to see that
for each Gnomon one Red Square (1/2 ∗ 1/2) has to jump right-up on the new,
next, Gnomon we created (so from Red it becomes Green).

In this way we preserve the linear Rule of the derivative and of the Integer Deriva-
tive, that the following Gnomon has to have an height that is 2 Units bigger
than the previous one.

Regardless the Unit we take: 1/2 as shown here, 1/10 or 1/10m or in general
1/Km with K,m ∈ N for the moment, we always perfectly square the 1st Deriva-
tive Y = 2X till a Rational Upper Limit is A = P/Km. Of course we can't
square, for the moment, an area is π2.

Due to Telescping Sum Property all this works also for bigger n, so if
we take, as example the case n=3:

Mn = [Xn − (X − 1)n] becomes: M3 = (3X2 − 3X + 1)

A3 =
A∑

X=1

(3X2 − 3X + 1)

Again now we can divide all the terms of our Sum by K3 , remembering that if
we want to left unchanged the result, we have to multiply the Upper limit by K
so we have:

A3 =
A3

K3
∗K3 =

A∗K∑
X=1

(
3X2

K3
− 3X

K3
+

1

K3

)

Now we can call: x = X/K , so changing X with X = x ∗ K, if we respect the
following conditions:

a) if and only if K is a Factor of A, or perfectly divide A

- the Upper limit becomes: (A/K) ∗K = A (with K,A ∈ N+ )

- the Lower Limit X = 1 becomes x = 1/K so:

A3 =
A∑

x=1/K

(
3(x ∗K)2

K3
− (x ∗K

K3
+

1

K3

)
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Now we can simplify to have our new Step Sum, that moves Step 1/K from 1/K
to A = P/K, so the new Index x will be x = 1/K, 2/K, 3/K....A:

A3 =
A∑

x=1/K

(
3x2

K
− 3x

K2
+

1

K3

)

What is interesting is that K can be any Integer, but not just, as we will see in
the next chapters.

Talking for the moment of Integer K it's for so clear that it can be, for example,
equal to : K = km

Figure 9: For those wanna see a table of number: the Cube of 3 calculated with a Step Sum,
Step 1/10. From x = 1/10 to 3 we Sum 30 Gnomons M3,K=10 calculate for each x.
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The General RATIONAL Complicate Modulus (or Gnomon's height func-
tion) Mn,K for all n− th Power of Rational A = P/K becomes:

Mn,K =

(
n

1

)
xn−1

K
−
(
n

2

)
xn−2

K2
+

(
n

3

)
xn−3

K3
− ...+ /− 1

Kn

So we have now a more useful instrument able to work with Rational, since I
hope it's clear we with K = 10 we can now arrive to an Upper Limit is 0, 5 or
2, 7 or any other rational has 1 decimal digit, only. While if you need more dig-
its, you need just to rise K to Km with m bigger as you need.

Figure 10: How to make the Cube of 2 with a Step Sum Step 0.1:

23 = 8 is equal to the sum of the Red Columns

Base = 0.1

and the height will be M3,K=10

M3,10 = 3x2/10− 3x/100 + 1/1000

As we did for the Integers, we can now call the y′Q = Mn,K function: the Ratio-
nal Derivative that works for any x ∈ Q.

And this property will hold to the limit for K → ∞ too as I will show hereafter.
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Point 5: How to prove the Irrationality of Xm,i if n > 2:

We have now all the basics to calculate Xm,i avoding to solve the equation: A+ =
A−.

We already know from previous chapters that we can distinguish two case: n = 2
so when the 1st Integer Derivative Y ′ = 2X − 1 is linear, and n > 2, so when the
1st Integer Derivative Function Y ′ = (Xn − (X − 1)n) is a Curve.

Solving the Balancing Rule.

A+ = A−

is equal to solve the integral equation:

(Xm,i −Xi−1) ∗ ymi
−
∫ xm,i

xi−1

nxn−1 =

∫ xi

xm,i

nxn−1 − (xi − xm,i) ∗ ymi

Still if we know how to solve it we cannot go so far, since we are not able to solve
by radicals the equations of degree more than 5, (except using the graphics algo,
or via numerical computation).

So to prove that Xm,i it's always an Irrational if n > 2 we can summarize all the
work we did till here:

We note immediately that for n > 2 due to the Curved derivative, must be:

Xm,i ̸= X1/2 =
Xi−1 +Xi

2

so it must be r ̸= q and it is clear due to the Curvature of the 1st derivative is
r > q and I'll prove hereafter that is: Xm ∈ R−Q without solving any equa-
tions, just due to how Gnomons, and Xm,i are de�ned and built onto the curve.
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Having in mind the picture above: we note immediately that for n > 2 due to
the Curved derivative, must be:

Xm,i ̸=
Xi−1 +Xi

2

so must be r ̸= q and we will prove r > q, and Xm,i ∈ R−Q due to how
Gnomons are build.

If Xi−1 ∈ Q then Xi ∈ Q too because we built Xi = Xi−1 + 1/K for some
K = kn ∈ N
For the scaling property we have seen in the previous chapters we can choose for
example K = kn = 10n with n as big as we want.

So for any n will be:

1
kn > 1

kn+1 because it is clear that f.ex. 1
10n > 1

10n+1

thus rising n, so re�ning the Step Sum, it's clear that Xm,i will be a value packed
between Closer and Closer Two Following Rationals for what it is clear that:
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Xi−1/kn < Xi−1/kn+1

So we can Rise the Lower Bound Xi−1/kn moving it Right (foreword), while we
can Lower the Upper Bound Xi,1/kn moving it backward:

Xi,1/kn > Xi,1/kn+1

and for so, since by de�nition is, for any n > 2:

Xi−1/kn < Xm,i < Xi,1/kn

So Xm,i will be risen just via the In�nite Descente is known as Limit:

lim
n→∞

Xi−1/kn = Xm,i = lim
n→∞

Xi,1/kn

Thus for the Dedekind Cut Property Xm,i ∈ R−Q so it is (for curved 1st Deriva-
tive, so from n = 3) always an Irrational Value.

And since there are many of them depending on the n − th power we
choose, and we can distinguish them, they form the Class of Irrationals
de�ned by the equation A+ = A− we will see it is not copatible, from
n = 3 with Fermat's Cut that procuce another type of Irrationals.

While we have to remember that still if Xm,i ∈ R−Q the Height of the Gnomon,
for Rational divisions, is (in general):

(Xn
m,i − (Xm,i − 1)n) = nXn−1

m,i ∈ Q = Mn,K

where I remember Mn,K is, i� we �x K ∈ N a Rational too:

Mn,K =

(
n

1

)
xn−1

K
−
(
n

2

)
xn−2

K2
+

(
n

3

)
xn−3

K3
− ...+ /− 1

Kn

Fermat proof in the most elegant way will come understanding that Fermat's
Cut will produce for n > 2 another type of Irraational, fells on an Abscissa
XF ̸= Xm,i, but it will be a little long way to arrive there...
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Point 6: From Step Sum to the Integral:

We enter now in the most interesting part of the Rational Calculus, what is known
as the Finite Di�erence Analysis, passing from the Sum, to the Step Sum, to the
Limit, showing that the Telescoping Sum property lead to the Integral, but in an
interesting way:

we have no more, as in the Classic Riemann Integral an approximation of via
via more close Areas, approximation, since talking of derivative of Parabolas we
know we have an invariant: so don't care if we square the derivative with our
Gnomons, or rational Gnomons, or via Integral: we always get the same value
(under few simple conditions).

I'll aslo show that in a very similar way we can Bound some Irrationals between
a Lower and an Upper Integer and then Rational Limits that becomes our Irra-
tional Value just once we push the divisor K → ∞.

From Step Sum to the Integral:

If we keep the Complicate Rational Modulus for Cubes: M3,K = 3x2

K
− 3x

K2 + 1
K3

and we rise K the Area we are calculating (till an integer A) is always the same
(An) and pushing K → ∞, we have back the well know integral, as shown in this
picture:

Figure 11: The contribution to the Sum of the Bigger Order of In�nitesimal is now proend to
be exaclty Zero by this construction since the value of A ∈ N, so of An is well known and Rest
the Same independently from the K we choose.
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The telescoping Sum Property assure us that Power's of Integers, so all the deriva-
tive of Y = Xn, can be perfectly squared with columns of any BASE, but as seen
due to the fact that we can scale any picture as we want, we can also think to
increase the number of Gnomons keeping a littlest base 1/Km instead of 1 (or
more under certain conditions), but we can also push K → ∞ to move Step dx,
so having back an integral, wothout changeing the result for squared the Area.

Starting from A ∈ N+ we can write An as a Sum, or as a Step Sum or, at the
Limit as Integral remembering the exchange of variable x = X/K in each X
dependent Term (in this way we cut by Kn the Sum of the terms), and in the
Lower Limit (and in this way we multiply by K the number of index, what I call
the Step balancing the reduction of the Terms, as shown in the �rst chapters),
having:

An =
A∑

X=1

Mn =
A∑

x= 1
K

Mn,K = lim
K→∞

A∑
x= 1

K

Mn,K =

∫ A

0

nx(n−1)dx

Example for n = 3, putting x = X/K:

A3 =
A∑

X=1

(3X2 − 3X + 1) =
A∑

x=1/k

(
3x2

K
− 3x

K2
+

1

K3

)
Or:

A3 = lim
K→∞

A∑
x=1/K

(
3x2

K
− 3x

K2
+

1

K3

)
=

∫ A

0

3x2dx = A3

It's easy to prove this Limit with the classic technique, but also note that we
have a proof of the Transcendental Law of Homogeneity for K → ∞ that, in
this case: 3x/K2 and 1/K3 are vanishing quantities (are in�nitesimal of bigger
order) respect to the First Term 3x2/K since it depends just on f(x)/K, that is
our non vanishing quantity dx

Just to remember how Numbers are organized:
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Point 7: Triangular Equality / Inequality:

If A ∈ N∗ than we have the Triple (or Flat Triangular) Equality case so we can
write An as :

An =
A∑

x=1

Mn =
A∑

x=1/K

Mn,K = lim
K→∞

A∑
x=1/K

Mn,K =

∫ A

0

nxn−1dx

It follows that:

If and only If we are working with a Power of an Integer, the result
of the Sum / Step Sum / Integral, it is independent from the K we
choose:

While remembering that:

Mn,K =

(
n

1

)
xn−1

K
−
(
n

2

)
xn−2

K2
+

(
n

3

)
xn−3

K3
+ ...+ /− 1

Kn

If we choose: AQ ∈ Q− N: so if A = P/K with K > 1 than we can write An

just as:

An
Q =

AQ−N∑
x=1/K

Mn,K = lim
K→∞

AQ∑
x=1/K

Mn,K =

∫ AQ

0

nxn−1dx

If AR ∈ R−Q with A= Irrational, than we can, in general, write An
R as:

An
R = lim

K→∞

AR∑
x=1/K

Mn,K =

∫ AR

0

nxn−1dx
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Pls see next Chapt because if the Irrationality of A depends on a known factor
there is another equality we will see later on.

With this notations in mind we can for so write the Triangular Inequality:

An
N∗ =

AN∗∑
x=1

Mn ≤
AQ∑

x=1/K

Mn,K ≤ lim
K→∞

AR∑
x=1/K

Mn,K =

∫ AR

0

nxn−1dx
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Proof in the most simple case n = 2:

Given: a, k ∈ N+ we can write:

ak∑
x=1

(
2x

k2
− 1

k2

)
= a2 =

∫ a

0

2x dx.

Proof:

ak∑
x=1

(
2x

k2
− 1

k2

)
=

1

k2
∗

{(
2 ∗

ak∑
x=1

x

)
−

ak∑
x=1

1

}
=

=
1

k2
∗ {(ak)(ak) +��ak −�

�ak)} =
1

��k
2
∗ (a2��k2) = a2 =

∫ a

0

2x dx

For n > 2 it follows in the same way (just with more vanishing Terms). But to
understand the fact that there is continuity between the Integer Sum and the
Integral, also the Old Mathematician has to digest that:

- The Mute Property of the Index was a False Math Mito, if taken in the sense
that it has nothing to tell to us, in fact,

as shown, we can make a change of variable calling x = X/K so we have a K
times scaled variable and to Left unchanged the result we can write:

A2 =
AK∑
x=1

(
2x

K2
− 1

K2

)
=

A∑
x=1/K

(
2x

K
− 1

K2

)
=

= lim
K→∞

A∑
x=1/K

(
2x

K
− 1

K2

)
=

∫ A

0

2x dx

The proof it's immediately given once will be clear that :

- For the Lower Limit, the �rst 1/K step when K → ∞ becomes 1/K = 0

- 1/K2 it's an in�nitesimal of Bigger Order respect to 1/K, than it is zero be-
cause of the Identity, not just a vanishing term as the old mathematicians are
still thinking !

- For K|to∞ the �rst term having K as divisor becomes at the Limit, in the
standard notation: 1/K = dx

We have now the Tool Set let us recognize a Power of an Integer (or a Rational)
but we need the last step is well known in Abstract Algebra when one consider
the Set of Rational, including some Known Irrationals, for example number of
the type: P/

√
2 where P ∈ N or P ∈ Q so working with the set (Q,

√
2)
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Point 8: How to work with Irrational Steps

There is a last interesting case: our Step Sum can be able to rise an Irrational
Upper Limit P ∈ R−Q just in case the Irrational Factors (be it a single one,
or, more in general, an aggregation of Real Numbers we can qualify as an Irra-
tional) can be taken out from the Sum.

This is the key point I'll use later to prove Fermat is right and he has in the hands
all the "simple" instruments shown till here to state and prove his Last Theo-
rem.

I invented and I known all this from several years of discussions on several di�er-
ent forums that while it's clear for everybody that (for example) if:

P = π ∗ A2

we can be written as:

P = π ∗ A2 = π ∗
A∑
1

(2X − 1)

I Hope it's not soo complicate to understand that we can carry (for example)
the Square Root of π into the Sum Via Exchange of Variable X = x ∗

√
π :

P = π ∗ A2 = π ∗
A∑
1

(2X − 1) =

A∗
√
π∑

1∗
√
π

(2x ∗
√
π − 1 ∗ π)

Where we move of an Irrational step:

1 ∗
√
π; 2 ∗

√
π; ...; i ∗

√
π; ....;A ∗

√
π

Figure 12: Scaling X = x ∗
√
π with Irrational Steps we get back, in this case, Irrational

Gnomons too, but still a Sums till the Upper Limit is the Squares Root, of the Irrational we
start from. In the next picture we return to the Scaling of our interest is x = X/

√
2
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Figure 13: Scaling x = X/
√
2 and working below the 1st derivative of y = 2nXn−1 still with

Irrational Steps we get back Integer Gnomons and Sums are Squares of integers
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Here an example (and proof) of what happens in case we have K =
√
2. Taking

x = X/
√
2:

P = a2 =
A2

2
=

1

2

A∑
1

2x− 1 =

A/
√
2∑

x=1/
√
2

2x√
2
− 1

2
=

= 2 ∗
A∑

x=1

{(
2x

2(1/2)
· 1

2(1/2)

)
− 1

2

}

Where A ∈ N; the Sum has an Integer Number of Summands, but we have a
Step that has an Irrational Number width.

We can write:

2 ∗
a∑

x=1

{(
2x

2(1/2)
∗ 1

2(1/2)

)
− 1

2

}
= 2 ∗

a∑
x=1

(
�2x

�2
− 1

2

)
=

2 ∗

(
a∑

x=1

x

)
−

a∑
x=1

1 =
�2a(a+ 1)

�2
− a = a2 + a− a = a2.

Another example in case n = 3:

2 ∗
a∑

x=1

{
3 ∗
( x

2(1/3)

)2
∗ 1

2(1/3)
−
(

3x

2(1/3)
∗ 1

2(2/3)

)
+

1

2

}
= 3 ∗

a∑
x=1

x2 − 3 ∗
a∑

x=1

x +

a∑
x=1

1 =

=
3a(a+ 1)(2a+ 1)

6
− 3a(a+ 1)

2
+

2a

2
=

2a3 + 3a2 + a− 3a2 − 3a+ 2a

2
= a3.

This will becomes useful later on when I'll present my Proof of Fermat the Last
Theorem.

The point is always the same: If C is an Integer we can rise an Irrational Upper
Limit Value, for example C/21/n making an Integer Number of Step equal to C,
at the condition that we use the right Irrational Step K = 1/21/n. So the base
of the Gnomons has to perfectly divide the distance x from the origin, here x =
C/21/n.

For the same reason is also true, for example that:
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P = a2 =
A2

22/3
=

A/21/3∑
x=1/21/3

(
2x

21/3
− 1

22/3

)

The same for any other Power following just the Power rules.

Finally we have now all the Tools we need to attack the enteir serie of Power
Problems still if we don't know Abstract Algebra nor Elliptic functions.
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Proof of Fermat's Last Theorem

Preface

Another preamble here to prove FLT via a Geometric Construction leading to a
Solving Equation shows, without solving it, the impossible Integer Triplet from
n = 3

All that just to prove you I perfectly know what I'm doing with my CMA, and
to suggest you what can be done using All the Tools I've presented (the most
familiar you probably already have or understood at the �rst reading) because
the Final Direct proof via CMA, so using all such tools will left also the expert
reader thrilled, or simply thinking I'm an Idiot or a Crank. I've to �ght and I
received tonns of insults from the Math Comunity where all this work is shown
and public from his born in 2008.

The Geometric Proof via equation

Let's consider the equation Cn =?An + Bn, where, by �xed conditions, A,B ∈ N
and we want ot investigate if there is an integer C satisfy the Fermat's equality
(to avoid the reader confuse what is for sure equal to, and what it's equal to IFF
the Fermat's equality holds true, I distinguish from the equal sign = and the un-
known equality =? means: we have to prove if it is equal or not, and when.

Now, let's consider the derivative of a parabola Y = 2Xn for what the 1st Deriva-
tive is X ′ = 2nXn−1

On the main parabola we �x the Integer points: (A, 2An) ; (B, 2Bn)

I� Fermat equations holds true into the integers then Cn is �xed by the condi-
tion YF is an Ordinate is at the same distance from 2An and 2Bn, so IFF the
equation is true into the Integers then YF = Cn with C integer too, so the ques-
tion is If and When we have:

YF = 2An +∆ =?Cn

and:

YF = 2Bn +∆ =?Cn

with C ∈ N and ∆ = Bn − An So in the Cartesian plane we have:
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Figure 14: How to stick the FLT equation onto the Cartesian plane, example for n = 3. We
must focus the attention on A,B Integers by our choice and we have to check if the Area till
the unknown XF produce an Area is Cn with C ∈ N
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From where we can now �nd the point (XF , 0) for what XF =
(
2An+2Bn

2

)1/n
Because:

YF =

∫ XF

0

2nxn−1 = 2An +∆ = 2Bn −∆

and then we can de�ne the distance p = XF − A

The condition for a Triplet of Integers, so C ∈ N too, it's equal to have XF =
Xi =

C
21/n

since the integral till Xi below y′ = 2nxn−1 is:∫ C

21/n

0

2nxn−1 = Cn

So Fermat equality it's equal to write YF = Cn or XF = Xi =
C

21/n
but it is still

unknown if :

∫ XF

0

2nxn−1 =?

∫ C

21/n

0

2nxn−1 = Cn

That can not be solved directly but require one understood my Complicate Mod-
ulus Algebra (seems not digested by Professors I know) the following trick of a
system of equations.

Focusing onto the picture, and summarizing what is and what has to be if Fer-
mat equality holds true into the integers (because it's clear that there is always
a solution if C ∈ R), we can (again) see that if we choose A,B ∈ N:

XF =
(
2An+2Bn

2

)1/n
Xi =

C
21/n

From Cn = An + Bn we can write the statement: Cn =?An + Bn imply the
Symmetric Condition:

Cn = 2An + (Bn − An) and Cn = 2Bn − (Bn − An) where calling

∆ = Bn − An therefore ∆ has to be an Integer too, since we choose A, B Inte-
gers.

we have:

Cn = 2An +∆ and Cn = 2Bn −∆
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Figure 15: FLT equation onto the Cartesian plane, n = 3. We must focus on A,B Integers
by our choice, and the Fact that ∆ is both a Distance, and an Area as shown into the picture.
And that ∆ is equal to a Rectangle ∆ = p ∗ hp where p = XF − A and hp is the Height of
the Curve produces the same Exceeding and Missing Area between the Curve and the Top of
the equivalent Rectangle. With this construction Fermat �x an Abscissa XF that at the mo-
ment don't tell us if YF , so the value of the area till XF , is or not the n-th power of an Integer
C, that is what we will have to prove. But what is immediately well clear is that due to the
Curved Derivative: p > q and bot p, q, p/q ∈ R−Q are all Irrationals. While for n = 2 the
construction is the same, but thanks to the Linear1st Derivative XF is exactly in the middle so
p = q and a Common Step can be found
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but ∆ is also the rectangular area:

∆ = p ∗ hp (where, again, ∆ = Bn − An ∈ N+)

where the base p is:

p = Xf − A

And IFF Cn = An +Bn with A,B and C integers must be:

Xf =

(
2An + 2Bn

2

)1/n

= Xi =
C

21/n

then pF = pi to remember it is unknown and it has to be i� the FLT equality
holds true:

pF = pi =
C

21/n
− A

Then p has to be an Irrational only depending by the n-th root of 2, since A, C
are integers.

and of course this condition can be respected IF n = 2 by the Pythagorean
Triplets (we don't need to investigate longer since well know)

simply due to the fact that the product p ∗ hp has to rationalize and this is possi-
ble, simply because of the linear derivative produces a product is: square root of
2 * square root of 2 dependent just so = 2 = Integer

While for n>2 there will be more di�erent power terms of p as I will show later
on. In the following picture why Fermat hold for n = 2: XF = XBP = X1/2
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Figure 16: A numerical example of the case n = 2 where the Linear 1st Derivative allows the
Rationalization of the product p ∗ hp. More info on this case on my Vol.1
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Example n=2

1a) C2 = 2A2 −∆+ means

1b) A =
√

C2−∆+

2

But we also know from the picture that:

2) p = pF = C√
(2)

− A then we can rewrite the (1b) as:

1c)

(
C√
(2)

− p

)2

= C2−∆+

2

where we now use:

3a) ∆ = p ∗ hp,

where p is the Base, hp is the Average Height of the Rectangular area square the
area ∆ (for sure) then

1d)
(

C√
2
− p
)2

=
(

C2−p∗hp

2

)
form where

1e)
(

C2

2
− 2pC2

2
+ p2

)
=
(

C2−p∗hp

2

)
form where

1f)
(
p2 − 2pC2

2

)
= −

(
p∗hp

2

)
form where

1g) p− 2C2

2
+ hp

2
= 0

Where: p is the base, hp is the Average Height of the rectangulare area is Delta
(for sure) that as the Height of the Gnomon is in the form hp = 4Xm,F (sice we
are working below the 1st derivative is: y′ = 4x) can be found via the Integral
Balancing Equation:

Left Area=Right Area

∫ Xm,F

A

4xdx =

∫ XF

Xm,F

4xdx

Where we apply our hypo: XF = Xi = C/21/2:

X2
m,F − A2 =

C2

2
−X2

m,F

So:
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Figure 17: Scaling the previous picture with x = X/
√
2 we have the same result. I know this

looks strange but you can read my Vol.1 to understand from where this comes. I also add a
preview of another more direct and elegant proof, but needs to enter more in this modular,
scaled, algebra.
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Xm,F =

(
C2 − 2A2

2

)1/2

from where we can now have hp under Fermat's hypo:

hp = 4Xm,F = 4 ∗
(
C2 − 2A2

2

)1/2

Now putting into the (1g) we have:

1g) p− 2C2

2 + 2 ∗
(
C2−2A2

2

)1/2
= 0

So:

1g) p = C2 − 2 ∗
(
C2−2A2

2

)1/2
This told us that p is an Irrational depending by the Square Root of 2 (so XF =
Xi is a con�rmed true Hypo), can have Real solutions at the reasonable condi-
tion: 2A2 < C2 as it is since we know f.ex. in the triplet A=3, B=4, C=5 that is
2 ∗ 32 < 52

Still if we already know how to �nd the Pythagorean Triplets, I'll prove this is
the Condition under what FLT equation can have a Triplet of Integer parame-
ters, but as you will see hereafter the case n = 3 produce no Integer Triplets.
FLT equation is also equal to state ∆+ ∈ N = ∆− ∈ N so that:

Figure 18: This is a check to be sure we have not made some mistake, but also
show why Fermat's problem lead to a factorisation problem is unfortunately in
R−Qandforsocannotbesolvedinaneasyway.

IFF (means IF and only IF) there is an integer triplet, the irrationals values van-
ish and we return to an Integer ∆:

3b) ∆ = C2 − 2A2
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Figure 19: Another way to see the solution: Missing Area is equal to Exceeding one, and of
course in case of C = Odd a Central Neutral Gnomon must be present, means the height of the
central gnomon is exactly equal to the Ordinate of the 1st derivative for it's central Abscissa
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Conclusion for n = 2 proven also by a Trigonometric equa-
tion

A Triplet of Integers A, B, C is compatible with Fermat's Symmetric Construc-
tion

IFF: n = 2 for what XBP = XF = A+ p = Xi = A+ C
21/2

,

so p has to be in a special Set of Known Irrationals depending by the n-th root
of 2.

I will also show a more simple geometric proof involving yi in the case n = 2.

I again, and again,remember that is very important to have well clear whatistrue,
because we know, or �x, them: so (f.ex.) A,B ∈ N

and what is an Unknown, so what some values has to be equal to, if Fermat
holds true,

f.ex we have de�ned by hypo XF = Xi and therefore AF = A by imposing Fer-
mat's Symmetric Condition (I discover many years ago),

and for so p = C
21/2

− A holds true IFF Fermat equation holds true with an inte-
ger triplet.

because we really know where is XF by the the construction,

but unfortunately we don't really know if it is XF = C
21/2

at �rst sight (till we
don't know where too look as reference)

we don't really know if it is equal to the value let the Area till XF be exactly
equal to the Integer C to the n-th power.

But taking a better look to the Symmetric Condition I discover I can better show
the Exchange of Variable x = X/

√
2 by representing it, as it is: 2 Systems of

Reference Axis, (x, y) and (X, Y ) one exactly at 45° to the otherm that corre-
spond to the value given by the Exchange of Variable we need to perform:

cos(α) = 1√
2
:

The special condition for n = 2 is the ony one for what:

sin(α) = cos(α) =
√
2
2 = 1√

2

What is nice in this picture is that I �nally found what I'm looking for:

a relation between the Area Cn is given by the sum of Gnomons from 0 to C (on
the rotated X,Y) Axis is:
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Cn =
C∑
1

(Xn − (X − 1)n) =
C∑
1

Mn

and the other one is:

Cn

2
=

∫ A+B
2

0

2nxn−1dx

that allows us to prove Fermat for any case n > 2 via Geometric Concerning,
only, and I hope it's very evident from the picture (true just for n = 2) where:

- the height yi of the corner of the last Gnomon of the Sum, calculated for X =
C, comes observing that:

Mn,C = (Xn − (X − 1)n)|x=C

once returned into the (x, y) axis, to satisfy Fermat's equation (so yF height)
into the integers has to be: yF = yi so remembering what is yF :

yF = C ∗ sin(α) +Mn,C cosα =?yi

And what Yf has to be, so for n = 2 we prove it is :

yF = yi = f
(

1
21/2

)
so:

yF = C ∗ sin(α) + (2C − 1) ∗ cosα = yi = f

(
1

21/2

)
Where cosα comes from the triangle formed at the Origin by the x and X axis:

cosα = C/21/n

C = 1
21/n

while:

sinα = cosα just in the case n = 2 while for n > 2 it comes (for all
n) from the Pithagorean theorem:
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C sinα =
√

C2 − (C cosα)2

So dividing both side by c2 it is in the form (just for n = 2):

sinα =
√
1− ( 1

21/2
)2 =

√
2−1
2 = 1√

2
= cos(α)

At the same result we can arrive with the identity: sin2 α + cos2 α = 1, but now
we are sure that in case the angle di�ers from 45°, so for any other n > 2 we get
back 2 di�erent Irrational Numbers are one (squared) the complement to 1 of
the square of the other, so they share no common Rational factors, so the sum:

yF = C ∗ sin(α) +Mn ∗ cosα
is:

yF = C ∗ sin(α) +Mn ∗ cosα ̸= yi = hXi
= 2nXn−1

i = f
(
C/21/n

)
So: yF = yi since:

yF = C ∗ 1

21/2
+ (2C − 1) ∗ 1

21/2
= yi = hXi

= 2 ∗ A+B

2 ∗ 21/2

that taking the picture as reference is:

yF = 5 ∗ 1

21/2
+ (2 ∗ 5− 1) ∗ 1

21/2
= yi = hXi

= 2 ∗ 3 + 4

2 ∗ 21/2
So:

yF = 7 ∗
√
2 = yi = 7 ∗

√
2
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Figure 20: The exchange of scale x = X/
√
2 is equal to a rotation of the system of axis: what

imply the FLT equality is that the Top Right Corner of the area is Cn (in the X,Y reference)
is at the same height yi of the height of the Triangle having area equal to Cn/2 in the x, y ref-
erence. The �nal construction with a a numerical example A = 3, B = 4, C = 5 of the case
n = 2 where yi represent the solving condition: yi = C ∗ sin(α) + (2C − 1) ∗ cosα, or the border
of the Gnomon in the (X,Y ) plane has to be equal to the height of the 1st derivative in XF ,
so here 2XF = 2Xi = 7 ∗

√
2 in the (x, y) one.
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Figure 21: We can see on a table in the case n = 2 why and what satisfy the equality

In the next page what for n = 3 on the Cartesian plane, and the proof via equa-
tions.
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Figure 22: I know mathematicians will not like this kind of messy picture that put the FLT
equation and the proof all together onto the Cartesian plane, example for n = 3 but let one to
have all under his eyes, in the same picture
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Fermat the Last in the case n=3 onto the Cartesian Plane

From n = 3 the 1st derivative is a curve, so more you go right more the curve
is steep, so I will prove XF can not longer be equal to Xi because if we �x them
equals we arrive to a solving equation for ∆ that lead to Complex solutions just,
and this proves XF ̸= Xi, so that Fermat was right.

But the elegant proof I think at this moment also the esxpert reader can miss
is that if p > q and all p, q, P/q ∈ R−Q there is no way to balance as in the
Figure 19, where a Central Neutral Gnomon is present, because once we keep a
certain number p′ ∈ N + 1+ a certain number q′ ∈ N then or both p′, q′ are Odd
or Both Even, means they have to share the common factor 1/2, so the Number
of Step can be duplicated , means we can move step 1/2 as we did for n = 2,
while it is clear that XF shares no lonerg this common factor

We must remember what happens to the Gnomons when the Derivative is a Curve:
Xm,i is no longer in the Middle of the Base of the Gnomon for a simple geomet-
rical fact, and it's no longer a Rational Number. I've proved that: p > q with
p, q ∈ R−Q presenting this picture we need to have well in mind to make the
�nal right conclusions.

Figure 23: From n = 3 the 1st Derivative is no longer a line. So since curved Xm,i > XMP=1/2

so p > q with p, q inR−Q
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For what I remember Xm,i ̸= Xi−1+Xi

2
because:

Xi−1/kn < Xm,i < Xi,1/kn

So Xm,i will be risen just via the In�nite Descente is known as Limit:

lim
n→∞

Xi−1/kn = Xm,i = lim
n→∞

Xi,1/kn
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Fermat the Last in the case n=3 proved by a 2th degree equa-
tion has no Real solutions

In the �rst proof given by Gauss for n = 3 he don't use this Geometryc concern-
ing, but Fermat was the �rst to discover the In�nite Descent, here is represented
by an in�nite number of step dx, it is necessary to rise the Irrational Limit if XF

that produce the irrational C. lead to Fermat's equality from n = 3 in case we
choose A, B integers.

Always on the cartesian plane, below the 1st Derivative of 2nxn−1 we can write,
for the Symmetric condition, as for n = 2:

1a) C3 = 2A3 +∆+ means

1b) A =
(

C3−∆+

2

)1/3
But we also know from the picture that to let C ∈ N must be:

2) p = C
21/3

− A from where: C
21/3

− p = A

And also:

3a) ∆+ = p ∗ hp

So putting the (1b) into the (2) we have:(
C

21/3
− p
)
=
(

C3−∆+

2

)1/3
so cubing both terms:

1c)
(

C
21/3

− p
)3

= C3−∆+

2

The after recalling the (3a) ∆+ = p ∗ hp, putting this into the (1g) we have:

1d)
(

C
21/3

− p
)3

=
(
C3−p∗hp

2

)
form where

1e)
(
C3

2 − 3C2p
22/3

+ 3Cp2

21/3
− p3

)
=
(
C3−p∗hp

2

)
or:

1f)
(
−3C2p

22/3
+ 3Cp2

21/3
− p3

)
= −

(
p∗hp

2

)
from where hp :

1g)
hp

2 = p2 − 3Cp
21/3

+ 3C2

22/3

Where from n = 3 the longer develop of the cube (so the curved 1st derivative)
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produces di�erent powers of p, and 2 (I hope I well remember that Fermat was
looking for the Power of 2 problem, not jet solved, for an unkonwn reason):

where again:

3a) ∆+ = p ∗ hp

Where: p is the base, hp is the Average Height of the rectangulare area is Delta
for sure) that as the Height of the Gnomon is in the form hp = 6X2

m,F (since we

are working below the 1st derivative is: y′ = 6x2) can be found via the Integral
Balancing Equation:

Left Area=Right Area

∫ Xm,∆+

A

6x2dx =

∫ XF

Xm,∆+

6x2dx

Where we apply our hypo: XF = Xi =
C

21/3
:

X3
m,∆+ − A3 =

C3

2
−X3

m,∆+

So:

Xm,∆+ =

(
C3 − 2A3

2

)1/3

from where we can now have hp under Fermat's hypo:

hp = 6X2
m,∆+ = 6 ∗

(
C3 − 2A3

2

)2/3

recalling the (1g) :

1g)
hp

2 = p2 − 3Cp
21/3

+ 3C2

22/3

Note: we have to immediately to say that this looks very di�erent
from a 1st Derivative y′ = 2nxn−1 or Gnomon's Heigt is:

M3,K=21/3 =
3x2

21/3
− 3x

22/3
+ 1

2

So we have:

1h) p2 − 3Cp
21/3

+ 3C2

22/3
− 3 ∗

(
C3−2A3

2

)2/3
= 0
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that is a simple 2th degree equation we can solve in A to show it has no Integer,
nor Real solutions that means our hypo XF = Xi is FLASE, so Fermat is right
(at the moment for n=3):

Figure 24: A simple 2th degree equation proves FLT for n = 3 since the root of a negative
number is not a Real number

It is not hard to see that it cannot have solutions into the integers since C >> p
then the inner root of a Negative Number assure us the absurdum we are look-
ing for (I hope !).

To be fully sure of that, we can also repeat the same process starting from Cn =
2Bn −∆− for what the �nal concerning due to the all positive signs in the inner
root leave us less doubt. And in case we have another equation for checking the
result is p+ q = B − A.
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Hereafter FLT equation lead to this factorisation (in R−Q) can be true just in
case 2 (only) of the 3 variable are Integers :

Figure 25: The resulting formula, check, in case of A,B,C Integers it's clearly not in N, and the
same happens for bigger n because of the curved 1st Deriative have, so di�erent powers of 2 in
the result . Purists, and I'm sure Mr Wiles too, will jump on the chair, but that's it !

I know this from long time but I've missed the proof because I really forgot to
show who really is p, versus what it must be to let C ∈ N produce an area Cn

with ∆ integer too.

Last step is to prove that the case n = 3 can be used as example for all the n >
3 cases, but I hope it's already clear what we need to prove: under the curved
derivative XF is �xed by construction in an Irrational Value is not equal to Xi =
C

21/n
, because if we �x XF = Xi, still with numbers respect the condition Cn >

2An we always arrive to a solving equation has Imaginary roots only.

But since it is not possible to write and check any equation (one for each n) we
need to go deeper in understanding why, by construction, XF ̸= Xi so why a
Right Border of a Gnomon (under Fermat conditions) can never be �xed by the
condition Xi = C

21/n
, and the better understanding of the Case n = 2 is neces-

sary to show what the exchange of variable x = X
21/n

lead to. Hereafter as second
check the proof using q.
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For the same reason ∆+ = ∆− let us make the same procedure to �nd ∆− =
q ∗ hq

1a) C3 = 2B3 −∆− means

1b) B =
(

C3+∆
2

)1/3
But we also know from the picture that to let C ∈ N must be:

2) q = B − C
21/3

So putting the (1b) into the (2), and cubing to remove the cubic root, we have:

1c)
(
q + C

21/3

)3
= C3+∆

2

Where from n = 3 the longer develop of the cube (so the curved 1st derivative)
produces di�erent powers of q, and 2 :

where

3a) ∆− = q ∗ hq

Where: q is the base, hp is the Average Height of the Rectangular Area is ∆
−

for sure) that as the Height of the Gnomon is in the form hq = 6X2
m,F (sice we

are working below the 1st derivative is: y′ = 6x2) can be found via the Integral
Balancing Equation:

Left Area=Right Area

∫ Xm,∆−

XF

6x2dx =

∫ B

Xm,∆−

6x2dx

Where we apply our hypo: XF = Xi =
C

21/3
:

X3
m,∆− − C3

2
= B3 −X3

m,∆−

So:

Xm,∆− =

(
C3 + 2B3

2

)1/3

from where we can now have hq under Fermat's hypo:

hq = 6X2
m,∆− = 6 ∗

(
C3 + 2B3

2

)2/3
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The after recalling some other formula, putting this into the (1g) we will arrive
to the 2th degree solvable equation.

1d)
(
q + C

21/3

)3
=

C3+q∗hq

2

form where

1e)
(
p3 + 3C2q

22/3
+ 3Cq2

21/3
+ C3

2

)
=
(
C3+q∗hq

2

)
or:

1f)
(
q3 + 3C2q

22/3
+ 3Cq2

21/3

)
=
(
q∗hq

2

)
from where hp :

1g)
hq

2 = q2 + 3C2

22/3
+ 3Cq

21/3

that lead to a simple 2th degree equation we can solve in A to show it has no
Integer, nor Real solutions that means our hypo XF = Xi is FLASE, so Fermat
is right (at the moment for n=3):

1h) q2 + 3Cq
21/3

+ 3C2

22/3
− 3 ∗

(
C3+2B3

4

)2/3
= 0

That is a 2th degree equation has no solutions for B ∈ N because of the square
root of anoter negative number (as for A in the previous trip)::
To check twince all this we have also:
1a) p+ q = B − A but this will be only waste time !

For n = 4 thanks to the AI helps we have:

q4 + 5q2/5 + 10q2/5 + 22q4/5 + 10q3/5 + 5q4/5 = 12 · 6(5 + 2 5
√
4)4/5q4 + 2 5

√
5Cq3 +

2 5
√
10C2q2 + 2 5

√
10C3q + 2 5

√
5C4
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Figure 26: Another more clear simple 2th degree equation proves FLT for n = 3 since the inner
root of a negative number is not a Real Number
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Conclusion:
As shown in the geometric construction on the Cartesian plane for all n > 1 a
Triplet of Integers is compatible with Fermat's Symmetric Construction IFF yi is
an Irrational Number depending just by the n-th root of 2, but while for n = 2
the Geometric Construction under a Linear Derivative shows an In�nite Number
of Solutions are possible, from n = 3 due to the curved derivative XF has a dis-
tance p from A and q from B, that is p > q for what p, q, p/q ∈ R−Q are all
Irrationals and non compatible with the hypo XF = Xi as shown by the equa-
tion.

Unfortunately while for n = 2 the linear derivative and the condition sin(α) =
cos(α) produce a simple geometric construction, so a simple geometric proof too,

the trigonometric version for the curved derivative (n > 2 is not so easy to be
extended as I did for the equation, so I'm still working further on such conclu-
sion.

But I'm in the hope now mathematicins will be more interested to study what
follow by my Complucate Modulus Algebra Concerning and Proof I produce sev-
eral years ago, that show via new modular concerning the impossibility of a in-
teger triplet from n = 3 because the Shift on the Sum, on a curved derivative is
like trying to couple two di�erent non Coupable Gear (so having theet in an ir-
rational ratio), because it is simply impossible to ajust Limits and terms, at the
same time, to let the two Sums are Left and Right Hand, equal both sides.
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Preview of FLT Proof via CMA :

A very direct and elegant proof for the FLT, do not involve computation, comes
putting at work my Complicate Modulus Algebra, so all what was shown into
my Vol.1 The Two Hand Clock. And it's just question of Sum and Limits and a
simple modular concept I produce without Abstract Algebra concepts.

The same Hypo: A,B,C ∈ N so An, Bn and Cn can be rewritten in Sums (us-
ing n = 3 as example). X instead of i is used for a good reason will be clear to
the good reader, then we ask if can be possible the FLT equality for some triplet
(and for so the =? sing rest in any non proven true statement, while the = will
appear when we are sure of the equality (holds true once we left one of the 3 free
to be an Irrational too):

A3 =?C3 −B3

Step.1: Transforming Powers in SUMs (pls ref. my Vol.1):

A3 =?
C∑

X=1

(3X2 − 3X + 1)−
B∑

X=1

(3X2 − 3X + 1) =?
C∑

X=B+1

(3X2 − 3X + 1) (0)

Step.2: Applying the Shifting of the Limits Rule we have:

A3 =
A∑

X=1

(3X2 − 3X + 1) =?
C−B∑
X=1

(3(X +B)2 − 3(X +B) + 1)

But since nothing has to change if we are working into the integers,
we can now Force the Right Hand Sum to work with Rational Steps:

Step.3a: Going Rational, using my Step Sum property, there must be
an intger K for what x = X/K lead to the equality (pls ref. my Vol.1):

A3 =
A∑

X=1

(3X2 − 3X + 1) =?
C−B∑
x=1/K

(
3(x+B)2

K
− 3(x+B)

K2
+

1

K3

)

Fact: we know that there exist a Real CR−Q from now to be short into the for-
mulas: CR for what C ′ = (An + Bn)1/n so that pushing the Sum to the limit we
can Always have the equality:
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Figure 27: A new concept to be digested: for parables and polinomyal under certain condition
we can use a scaled Sum, via scaling the Step of the Sum it is no longerg a mute i but a talk-
ing x = X/K

Figure 28: How to push the Step Sum to the Limit for K → ∞
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Step.3b: Going to the Limit:

A3 = lim
K→∞.so.CQ→C

CR−B∑
x=1/K

(
3(x+B)2

K
− 3(x+B)

K2
+

1

K3

)
=

=

∫ CR−B

0

(3x2+6Bx+3B2)dx = (x3+3Bx2−3xB2)|0,C−B =

∫ C′

B

3x2dx = x3|CR,B = C3
R−B3

Figure 29: C3 −B3 written in known algebra, or via Integral checked by Mathematica program

While with a Rational CQ−N = P/K (from now CQ), for any integer K we have
(for any n > 2)

the inequality must be clear if CQ < CR < CQ + 1/K :

CQ−B∑
x=1/K

(
3(x+B)2

K
− 3(x+B)

K2
+

1

K3

)
< A3 =

A∑
X=1

(3X2 − 3X + 1) =

lim
K→∞

CR−B∑
x=1/K

(
3(x+B)2

K
− 3(x+B)

K2
+

1

K3

)
<

CQ+1/K−B∑
x=1/K

(
3(x+B)2

K
− 3(x+B)

K2
+

1

K3

)

Whithout giving you more details I will give in a next paper, once one under-
stood my geometric construction I hope also one understood that this is because:
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Figure 30: If we try to make a the Step Sum till a Rational we arrive short, and at the next
step too long and thi indipendently by the K we choose till at the limit we rise our targhet
that means we are trying to rise an irrational via rational step for what: CQ < CR < CQ + 1/K

while onto (X,Y) reference we have a �nite number of Gnomons (so we can use
a classic Sum), onto the Scaled System (x, y) we need the Integral that moves
step dx to rise an area bellow the curved derivative (is for example for n = 3
y′ = 6X2),

till the unknown XF is for sure an Irrational (since p > q and for what we will
prove in the new paper as soon as ready),

so we have to move step dx till any Real Right Border, so any Upper Irrational
Limit, can be risen by the Integral, only, while with a simple known Sum, just,
we can rise an Integer Upper Limit, just, or via Step Sum we normally rise a
Rational, just, and in just some special case, as shown in Vol.1, we can rise a
known Irrational too, but just scaling the Sum of a known quantity allow to ar-
rive to an Xi is the XF Fermat condition �x, as I will better show).

But the more smiple answer with my CMA is that it is not possible to arrange
the Right side Sum to have same limit and terms if n > 2 because terms behave
NON linearly, while index moves linearly so there is no way (except via integral)
to transform the shifted Sum into a genuine power of an integer.

And in the Irrational version with the change of scale x = X/21/n will be shown
too in my next work, and into the Vol.2 will discuss Euler and Beal problems
too.

to be continued... asap
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Figure 31: Just for n = 2 the Derivative is Linear and for so produce the fact that for some
triplets A,B,C the Medium Height produce an Abscissa it's XF = XI = C/

√
2, that is the

same to say: 1/2 is a Common Factor of A,B,C, while from n = 3 the curvede derivative let
the equation be impossible in the integers. Here an example for n = 3 and the quasi triplet
5,6,7.
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Reference Section :

Sorry to say that because of the simple Math I use, the only refer-
ence it is usefull but to inderstand more on my CMA, is my Vol.1
you can ask me, or �nd it on Academia.edu or onto the web at my
blog once again at work.

Stefano Maruelli robotec2 (at) mail.netsurf.it


