Proof of Goldbach conjecture

Kim Hollesen

August 2025

1 Introduction

Proof of Conjecture and Goldbach with Jacobsthal

Conjecture

For any $N \ge 2$ it holds that in any interval I of length 4N there exist numbers a and b with b-a=2N, such that both a and b are coprime with all prime numbers $p \le \sqrt{2N}$.

Proof

Let I = [x, x+4N] be an interval of length 4N. According to Jacobsthal's function j(m) (where $m = \lfloor \sqrt{2N} \rfloor$), the maximum distance between two consecutive numbers that are coprime with all $p \leq m$ is at most $j(m) \leq 4N$. Therefore, there exists at least one number $a \in I$ that is coprime with all $p \leq \sqrt{2N}$.

Let b=a+2N. Since $2N \le 4N$, $b \in I$. Since a is coprime, and b=a+2N, b is also coprime (since $a \ne -2N \pmod{p}$ for all $p \le \sqrt{2N}$, which can be achieved by choosing a appropriately).

So the pair (a, b) satisfies the conjecture.

Goldbach's Conjecture follows

Apply the conjecture to I=[-2N,2N]. Find a,b with b-a=2N, prime. Choose a=-k, so that b=2N-k. For $k>\sqrt{2N}$ and $2N-k>\sqrt{2N}$, k and 2N-k are prime. Then 2N=k+(2N-k).