Riemann Hypothesis and Primorial Number

Choe Ryong Gil

Department of Mathematics, University of Sciences, Gwahak-1 dong, Unjong District, Pyongyang, D.P.R.Korea, Email; <u>ryonggilchoe@star-co.net.kp</u>

August 8, 2015

Abstract; In this paper we consider the Riemann hypothesis by the primorial numbers. *Keywords;* Riemann hypothesis, Primorial number.

1. Introduction and main result of paper

Let *N* be the set of the natural numbers. The function $\varphi(n) = n \cdot \prod_{p|n} (1-p^{-1})$ is called the Euler's function of $n \in N([3])$. Here $p \mid n$ note *p* is the prime divisor of *n*. Robin showed in his paper [5] (also see [4])

[Robin Theorem] If the Riemann hypothesis (RH) is false, then there exist constants $0 < \beta < 1/2$ and c > 0 such that $\sigma(n) \ge e^{\gamma} \cdot n \cdot \log \log n + c \cdot n \cdot \log \log n / (\log n)^{\beta}$ holds for infinitely many $n \in N$, where $\sigma(n) = \sum_{d|n} d$ is the divisor function of $n \in N$ ([5]) and $\gamma = 0.577 \cdots$ is Euler's constant ([3]). From this we have

[Theorem 1] If there exists a constant $c_0 \ge 1$ such that

$$n/\varphi(n) \le e^{\gamma} \cdot \log \log \left(c_0 \cdot n \cdot \exp \left(\sqrt{\log n} \cdot \left(\log \log n \right)^2 \right) \right)$$
(*)

holds for any $n \ge 2$, then the RH is true.

For $n \in N$ $(n \neq 1)$ we define $\Phi_0(n) = \exp\left(\exp\left(e^{-\gamma} \cdot n / \varphi(n)\right)\right) / \left(n \cdot \exp\left(\sqrt{\log n} \cdot \left(\log \log n\right)^2\right)\right)$.

Then we give

[Theorem 2] For any $n \ge 2$ we have $\Phi_0(n) \le 24$.

[Corollary] For any $n \ge 5$ we have

$$\frac{n}{\varphi(n)} \le e^{\gamma} \cdot \log \log n + 21.483 \cdot \frac{\left(\log \log n\right)^2}{\sqrt{\log n}}$$

2. Proof of Theorem 1

It is clear that $\sigma(n) \cdot \varphi(n) \le n^2$ for any $n \ge 2$. If (*) holds, but the RH is false, then

$$e^{\gamma} \cdot \log \log n + \frac{c \cdot \log \log n}{\left(\log n\right)^{\beta}} \le \frac{\sigma(n)}{n} \le \frac{n}{\varphi(n)} \le e^{\gamma} \cdot \log \log \left(c_0 \cdot n \cdot \exp \left(\sqrt{\log n} \cdot \left(\log \log n\right)^2\right)\right)$$

holds for infinitely many $n \in N$. On the other hand, since $\log(1+t) \le t$ (t > 0), we have

$$\log \log \left(c_0 \cdot n \cdot \exp \left(\sqrt{\log n} \cdot \left(\log \log n \right)^2 \right) \right) = \log \left(\log n + \log c_0 + \sqrt{\log n} \cdot \left(\log \log n \right)^2 \right) =$$
$$= \log \log n + \log \left(1 + \frac{\log c_0}{\log n} + \frac{\left(\log \log n \right)^2}{\sqrt{\log n}} \right) \le \log \log n + \frac{\log c_0}{\log n} + \frac{\left(\log \log n \right)^2}{\sqrt{\log n}}.$$

Therefore, for infinitely many $n \in N$ we have $e^{-\gamma} \cdot \frac{c \cdot \log \log n}{(\log n)^{\beta}} \le \frac{\log c_0}{\log n} + \frac{(\log \log n)^2}{\sqrt{\log n}}$. From this we have $0 < e^{-\gamma} \cdot c \le \frac{1}{\sqrt{\log n}} \cdot \frac{\log c_0}{\log n} + \frac{\log \log n}{\sqrt{\log n}} \to 0 \quad (n \to \infty)$, but it is a contradiction. \Box

$$\operatorname{lve} 0 < e^{-\gamma} \cdot c \leq \frac{1}{\log \log n} \cdot \frac{\log c_0}{\left(\log n\right)^{1-\beta}} + \frac{\log \log n}{\left(\log n\right)^{1/2-\beta}} \to 0 \ (n \to \infty), \text{ but it is a contradiction.} \square$$

3. Reduction to the primorial number

Let $p_1 = 2$, $p_2 = 3$, $p_3 = 5$,... be first consecutive primes. Then p_m is m-th prime number. The number $(p_1 \cdots p_m)$ is called the primorial number ([1,8]). Assume $n = q_1^{\lambda_1} \cdots q_m^{\lambda_m}$ is the prime factorization of $n \in N$. Here q_1, \cdots, q_m are distinct primes and $\lambda_1, \cdots, \lambda_m$ are nonnegative integers ≥ 1 . Put $\mathfrak{I}_m = p_1 \cdots p_m$, then it is clear that $n \geq \mathfrak{I}_m$,

$$\frac{n}{\varphi(n)} = \prod_{i=1}^{m} \left(1 - q_i^{-1}\right)^{-1} \le \prod_{i=1}^{m} \left(1 - p_i^{-1}\right)^{-1} = \frac{\mathfrak{I}_m}{\varphi(\mathfrak{I}_m)}$$

and so $\Phi_0(n) \le \Phi_0(\mathfrak{T}_m)$. This shows that the boundedness of the function $\Phi_0(n)$ for $n \in N$ is reduced to one for the primorial numbers.

4. Some symbols

It is known $\sum_{p \le t} p^{-1} = \log \log t + b + E(t)$ by [6], where $E(t) = O\left(\exp\left(-a_1 \cdot \sqrt{\log t}\right)\right) (a_1 > 0)$ and $b = \gamma + \sum_p \left[\log(1 - 1/p) + 1/p\right] = 0.26 \cdots$ and t is a real number ≥ 2 . Put $F_m = \mathfrak{T}_m / \varphi(\mathfrak{T}_m)$, then we have

$$\begin{split} \log(F_{m}) &= -\sum_{i=1}^{m} \log(1-1/p_{i}) = -\sum_{i=1}^{m} \left[\log(1-1/p_{i}) + 1/p_{i} \right] + \sum_{i=1}^{m} 1/p_{i} = \\ &= -\sum_{i=1}^{m} \left[\log(1-1/p_{i}) + 1/p_{i} \right] + \log\log p_{m} + b + E(p_{m}) = \\ &= -\sum_{i=1}^{m} \left[\log(1-1/p_{i}) + 1/p_{i} \right] + \log\log p_{m} + \gamma + \sum_{p} \left[\log(1-1/p) + 1/p \right] + E(p_{m}) = \\ &= \log\log p_{m} + \gamma + E(p_{m}) + \varepsilon_{0}(p_{m}), \end{split}$$

where $\varepsilon_0(p_m) = \sum_{p > p_m} \left[\log(1 - 1/p) + 1/p \right]$. From this we have

$$(e^{-\gamma} \cdot F_m) = \log p_m \cdot e_0, \qquad \exp(e^{-\gamma} \cdot F_m) = p_m \cdot e'_0,$$

where
$$e_0 = \exp(E(p_m) + \varepsilon_0(p_m))$$
 and $e'_0 = \exp(\log p_m \cdot (e_0 - 1))$. Similarly, we have
 $(e^{-\gamma} \cdot F_{m-1}) = \log p_{m-1} \cdot e_1, \qquad \exp(e^{-\gamma} \cdot F_{m-1}) = p_{m-1} \cdot e'_1,$

where $e_1 = \exp(E(p_{m-1}) + \varepsilon_0(p_{m-1}))$ and $e'_1 = \exp(\log p_{m-1} \cdot (e_1 - 1))$.

We recall the Chebyshev's function $\mathcal{G}(t) = \sum_{p \le t} \log p([3])$. Then by the prime number theorem ([3]), it is known that $\mathcal{G}(t) = t \cdot (1 + \theta(t))$ where $\theta(t) = O\left(\exp\left(-a_2 \cdot \sqrt{\log t}\right)\right)(a_2 > 0)$. Then we see $\log \mathfrak{T}_m = p_m \cdot \alpha_0$ and $\log \mathfrak{T}_{m-1} = p_{m-1} \cdot \alpha_1$, where $\alpha_0 = 1 + \theta(p_m)$ and $\alpha_1 = 1 + \theta(p_{m-1})$. Now we put $N_i = \sqrt{\log \mathfrak{T}_{m-i}} \cdot (\log \log \mathfrak{T}_{m-i})^2 (i = 0, 1)$ and $C_m = \Phi_0(\mathfrak{T}_m)(m \ge 1)$.

5. Some numerical estimates **5.1.** An estimate of e_1 and e'_1

We put $p = p_{m-1}$, $p_0 = p_m$ below. For the theoretical calculation we assume $p \ge e^{14}$. The discussion for $p \le e^{14}$ is supported by MATLAB. Since $\left(e^{-\gamma} \cdot F_{m-1}\right) = \log p \cdot e_1 < \log p + 1/\log p (p \ge 2)$ by (3.30) of [6], we respectively have $e_1 < 1 + 1/\log^2 p < 1.0052 (p \ge e^{14})$, $e_1' < \exp(1/\log p) < 1.075 (p \ge e^{14})$ and $e_1 \cdot e_1' < 1.08 (p \ge e^{14})$.

5.2. An estimate of $(e_1 \cdot e_1')$

Since if $e_1 \le 1$ then $e'_1 \le 1$, we have $e_1 \cdot e'_1 \le 1$. On the other hand, it is known that by (3.17), (3.20) of [6], $(-1/\log^2 t) \le E(t) = \sum_{p \le t} p^{-1} - b - \log \log t \le (1/\log^2 t)$ (t > 1). Hence, since $\varepsilon_0(p) < 0$, if $e_1 > 1$, then we have $0 < a := E(p) + \varepsilon_0(p) < 1/\log^2 p \le 0.0052(p \ge e^{14})$ and so

 $e_{1} = 1 + a + \sum_{n=2}^{\infty} a^{n} / n! \le 1 + a + a^{2} / (2 \cdot (1 - a)) \le 1 + a + 0.51 \cdot a^{2}.$ We have $e_{1} \cdot e_{1}' = \exp(a + \log p \cdot (e_{1} - 1)) \le 1 + b + b^{2} / (2 \cdot (1 - b))$, where $b = (1 + \log p) \cdot a + 0.51 \cdot \log p \cdot a^{2} \le 0.113 (p \ge e^{14}).$

Therefore we have

$$e_{1} \cdot e_{1}' \leq 1 + (1 + \log p) \cdot (E(p) + \varepsilon_{0}(p)) + 0.61 \cdot (1 + \log p)^{2} \cdot (E(p) + \varepsilon_{0}(p))^{2} (e_{1} > 1, p \geq e^{14}).$$

5.3. An estimate of $K_0 := p_0 \cdot (e'_0 - \alpha_0) - p \cdot (e'_1 - \alpha_1)$ It is clear that $p_0 \cdot \alpha_0 - p \cdot \alpha_1 = \log \mathfrak{I}_m - \log \mathfrak{I}_{m-1} = \log p_0$ and

$$E(p_0) - E(p) = \left(\sum_{i=1}^{m} \frac{1}{p_i} - \log \log p_m - b\right) - \left(\sum_{i=1}^{m-1} \frac{1}{p_i} - \log \log p_{m-1} - b\right) = \frac{1}{p_0} - \log \log p_m + \log \log p_{m-1} = \frac{1}{p_0} - \log \left(\frac{\log p_0}{\log p}\right)$$

and $\varepsilon_0(p_0) - \varepsilon_0(p) = -\log(1-1/p_0) - 1/p_0$. From this we have

$$\frac{e_0}{e_1} = \left(\frac{\log p}{\log p_0}\right) \cdot \left(1 + \frac{1}{p_0 - 1}\right) \text{ and } \frac{e'_0}{e'_1} = \frac{p}{p_0} \cdot \exp\left(\frac{\log p \cdot e_1}{p_0 - 1}\right)$$

Thus we have

$$K_{0} = p \cdot e_{1}' \cdot \left(\frac{p_{0} \cdot e_{0}'}{p \cdot e_{1}'} - 1\right) - \log p_{0} = p \cdot e_{1}' \cdot \left(\exp\left(\frac{\log p \cdot e_{1}}{p_{0} - 1}\right) - 1\right) - \log p_{0} = \log p_{0} \cdot (\mu \cdot e_{1}' - 1),$$

$$p_{0} - \left(\log p \cdot e_{1}\right) = 0$$

where
$$\mu = \frac{p}{\log p_0} \cdot \left(\exp\left(\frac{\log p \cdot e_1}{p_0 - 1}\right) - 1 \right)$$
. Hence we get

$$\mu \leq \frac{p}{\log p} \cdot \left(\exp\left(\frac{\log p \cdot e_1}{p}\right) - 1 \right) \leq \frac{p}{\log p} \cdot \left(\frac{\log p \cdot e_1}{p} + \frac{1}{2} \cdot \left(\frac{\log p \cdot e_1}{p}\right)^2 / \left(1 - \frac{\log p \cdot e_1}{p}\right) \right) \leq e_1 + \frac{1}{2} \cdot \frac{\log p \cdot e_1}{p} / \left(1 - \frac{\log p \cdot e_1}{p}\right) \leq e_1 + 0.503 \cdot \frac{\log p}{p} \left(e_1 > 1, \ p \geq e^{14}\right)$$
and $\mu \cdot e_1' - 1 \leq (e_1 \cdot e_1' - 1) + 0.55 \cdot \frac{\log p}{p} \left(e_1 > 1, \ p \geq e^{14}\right)$.

5.4. An estimate of $(1 + \log p) \cdot E(p)$

Put $f(t) = t \cdot (\log t \cdot E(t) - \theta(t))$, $g(t) = \sqrt{t} \cdot \log^2(t \cdot \alpha_1)$ and $d(t) = \frac{f(t)}{g(t)} (p \le t \le p+1)$, where *t* is a real number and $\alpha_1 = 1 + \theta(p)$ is a positive constant such that $(1 - 1/14) \le \alpha_1 \le (1 + 1/14)$. Then both

f(t) and g(t) are continuously differentiable functions on the interval (p, p+1). In fact, since the functions $\sum_{p \le t} (1/p) - b$ and $\mathcal{G}(t) = \sum_{p \le t} \log p$ are constants on (p, p+1), we have

$$E'(t) = \left(\sum_{p \le t} p^{-1} - b - \log \log t\right)' = \frac{-1}{t \cdot \log t}, \quad \theta'(t) = \left(\frac{\vartheta(t)}{t} - 1\right)' = -\frac{\vartheta(t)}{t^2} = -\frac{1}{t} - \frac{\theta(t)}{t}$$

and hence $f'(t) = (1 + \log t) \cdot E(t)$, where f'(t) is the derivative of the function f(t) and so on. Thus the function d(t) is also continuously differentiable on the interval (p, p+1), since g(t) > 0. Now we will arbitrary take x_1, x_2 such that $p < x_1 < x_2 < p+1$, and fix it. Then we have

$$d(x_{2})-d(x_{1}) = \frac{1}{g_{2}} \cdot \left[\left(f(x_{2}) - f(x_{1}) \right) - d_{1} \cdot \left(g(x_{2}) - g(x_{1}) \right) \right]$$

and hence $\int_{x_1}^{x_2} F(t) \cdot dt = 0$, where $g_2 = g(x_2)$, $d_1 = d(x_1)$, $F(t) = d'(t) - \frac{1}{g_2} \cdot (f'(t) - d_1 \cdot g'(t))$ and

$$g'(t) = \frac{\log^2(t \cdot \alpha_1)}{2 \cdot \sqrt{t}} \cdot \left(1 + \frac{4}{\log(t \cdot \alpha_1)}\right) \text{ for } t \in (x_1, x_2)$$

By the mean value theorem for integrals of [7], there exists a point ξ_0 such that $x_1 < \xi_0 < x_2$ and $\int_{x_1}^{x_2} F(t) \cdot dt = F(\xi_0) \cdot (x_2 - x_1) = 0$. On the other hand, since $d'(t) = \frac{1}{g(t)} \cdot (f'(t) - d(t) \cdot g'(t))$ and $f'(t) = d(t) \cdot g'(t) + d'(t) \cdot g(t)$ for any $t \in (x_1, x_2)$, we have

$$F(t) = \left(\frac{1}{g(t)} - \frac{1}{g_2}\right) \cdot f'(t) - \left(\frac{d(t)}{g(t)} - \frac{d_1}{g_2}\right) \cdot g'(t) = \frac{1}{g_2} \cdot \left[\left(g_2 - g(t)\right) \cdot d'(t) - \left(d(t) - d_1\right) \cdot g'(t)\right]$$

d hence $F(\xi_0) = \frac{1}{g_2} \cdot \left[\left(g_2 - g(\xi_0)\right) \cdot d'(\xi_0) - \left(d(\xi_0) - d_1\right) \cdot g'(\xi_0)\right] = 0.$

and hence $F(\xi_0) = \frac{1}{g_2} \cdot \left[\left(g_2 - g(\xi_0) \right) \cdot d'(\xi_0) - \left(d(\xi_0) - d_1 \right) \cdot g'(\xi_0) \right] = 0$

5.4.1. Proof of d''(t) < 0

As above mentioned, since $\left(-1/\log^2 t\right) \le E(t) \le \left(1/\log^2 t\right)$ (t > 1) and $t \ge p \ge e^{14}$, we easily see

$$f''(t) = \frac{E(t)}{t} - \frac{1}{t} \cdot \left(1 + \frac{1}{\log t}\right) < 0, \quad g''(t) = -\frac{\log^2(t \cdot \alpha_1)}{4 \cdot t \cdot \sqrt{t}} \cdot \left(1 - \frac{8}{\log^2(t \cdot \alpha_1)}\right) < 0$$

and hence f''(t) < g''(t) for any $t \in (x_1, x_2)$, where f''(t) is the second-order derivative function of f(t). From this we have d''(t) < 0 for any $t \in (x_1, x_2)$, where

$$d''(t) = \frac{1}{g(t)} \cdot \left[f''(t) - d(t) \cdot g''(t) - 2 \cdot g'(t) \cdot d'(t) \right]$$

In fact, it is clear that d''(t) < 0 is equivalent to $A < 1 + 1/\log t$, where $\beta = 1 + \frac{4}{\log(t \cdot \alpha_1)}$ and

$$A = E(t) + \frac{f(t)}{4 \cdot t} \cdot \left(1 - \frac{8}{\log^2(t \cdot \alpha_1)}\right) - f'(t) \cdot \beta + \frac{f(t)}{2 \cdot t} \cdot \beta^2$$

On the other hand, it is known that $(-1/\log t) \le \theta(t) \le (1/\log t)(t \ge 41)$ by (3.15), (3.16) of [6]. And since $\alpha_1 \ge (1-1/14)$ and $t \ge p \ge e^{14}$, we have $\log(t \cdot \alpha_1) = \log t + \log \alpha_1 \ge 13.925 > 0$ and hence

$$|A| \le \frac{1}{\log^2 t} + \frac{1}{2 \cdot \log t} + \left(\frac{2}{\log t} + \frac{1}{\log^2 t}\right) \cdot \left(1 + \frac{4}{\log(t \cdot \alpha_1)}\right)^2 \le 0.3 < 1 \quad (t \ge p \ge e^{14}).$$

This shows that d''(t) < 0 for any $t \in (x_1, x_2)$.

5.4.2. Proof of F'(t) < 0 **under** $d'(t) \cdot g(t) \cdot t \ge 1$

We here assume $d'(t) \cdot g(t) \cdot t \ge 1$ for any $t \in (x_1, x_2)$ and we will call it the condition (d) below. Then we have F'(t) < 0 for any $t \in (x_1, x_2)$ under the condition (d), where

$$F'(t) = \frac{1}{g_2} \cdot \left[\left(g_2 - g(t) \right) \cdot d''(t) - \left(d(t) - d_1 \right) \cdot g''(t) - 2 \cdot d'(t) \cdot g'(t) \right].$$

In fact, since g(t) > 0 for any $t \in (x_1, x_2)$, it is clear that F'(t) < 0 is equivalent to

$$\left(g_2-g(t)\right)\cdot d''(t)+\left(d(t)-d_1\right)\cdot\left(-g''(t)\right)<2\cdot d'(t)\cdot g'(t).$$

Since g(t) is the increasing function on the interval (x_1, x_2) and so $(g_2 - g(t)) \cdot d''(t) < 0$, it is sufficient to show $(d(t) - d_1) \cdot (-g''(t)) < 2 \cdot d'(t) \cdot g'(t)$. By the mean value theorem of [7], there exists a point t_1 such that $x_1 < t_1 < t$ and $d(t) - d(x_1) = d'(t_1) \cdot (t - x_1)$. From the condition (d), we have d'(t) > 0 and hence $d'(t_1) \cdot (t - x_1) \le d'(t_1) \cdot (x_2 - x_1) \le d'(t_1)$, because $x_2 - x_1 \le p + 1 - p = 1$. Also by the mean value theorem of [7], there exists a point t_2 such that $t_1 < t_2 < t$ and $d'(t_1) - d'(t) = d''(t_2) \cdot (t_1 - t)$. On the other hand, for any $t \in (x_1, x_2)$ we have

$$\left(-d''(t) \cdot g(t) \cdot t\right) = 1 + \frac{1}{\log t} - A \le 1 + 0.072 + 0.3 \le 1.5 \ \left(t \ge p \ge e^{14}\right).$$

From this, since (-d''(t)) > 0, we have

$$\left(-d''(t_{2})\right) \cdot \left(t-t_{1}\right) \leq -d''(t_{2}) \leq \frac{1.5}{g(t_{2}) \cdot t_{2}} = \frac{1.5}{g(t) \cdot t} \cdot \left(1 + \frac{t-t_{2}}{t_{2}}\right) \cdot \left(1 + \frac{g(t) - g(t_{2})}{g(t_{2})}\right) \leq \frac{1.5}{g(t) \cdot t} \cdot \left(1 + \frac{1}{t_{2}}\right) \cdot \left(1 + \frac{g(t) - g(t_{2})}{g(t_{2})}\right) \leq \frac{1.5}{g(t) \cdot t} \cdot \left(1 + \frac{1}{t_{2}}\right)^{2} \leq \frac{1.5}{g(t) \cdot t} \cdot \left(1 + \frac{1}{14}\right)^{2} \leq \frac{2}{g(t) \cdot t}.$$

By the condition (d), we have

$$\begin{pmatrix} d(t) - d_1 \end{pmatrix} \cdot \begin{pmatrix} -g''(t) \end{pmatrix} \leq d'(t_1) \cdot \begin{pmatrix} -g''(t) \end{pmatrix} \leq \begin{bmatrix} d'(t) + \begin{pmatrix} -d''(t_2) \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} -g''(t) \end{pmatrix} \leq \\ \leq \begin{bmatrix} d'(t) + 2/(g(t) \cdot t) \end{bmatrix} \cdot \begin{pmatrix} -g''(t) \end{pmatrix} \leq 3 \cdot d'(t) \cdot \begin{pmatrix} -g''(t) \end{pmatrix} < 2 \cdot d'(t) \cdot g'(t)$$

and hence F'(t) < 0.

5.4.3. An estimate for the point ξ_0 of $F(\xi_0) = 0$ under the condition (d)

Here we will obtain $\xi_0 = (x_1 + x_2)/2$ for the point ξ_0 of $F(\xi_0) = 0$ under the condition (d). By the mean value theorem for integrals of [7] and by

$$\int_{x_1}^{x_2} F(t) \cdot dt = \int_{x_1}^{\xi_0} F(t) \cdot dt + \int_{\xi_0}^{x_2} F(t) \cdot dt = 0,$$

there exist points λ_1 , λ_2 such that $x_1 < \lambda_1 < \xi_0 < \lambda_2 < x_2$ and

$$F(\lambda_1) \cdot (\xi_0 - x_1) + F(\lambda_2) \cdot (x_2 - \xi_0) = 0.$$
(F1)

Since F'(t) < 0 for $t \in (x_1, x_2)$ under the condition (d), we here have $F(\lambda_1) > F(\xi_0) = 0 > F(\lambda_2)$. On the other hand, we denote by y(x) the line passing through the points $(x_1, F(\lambda_1))$ and $(x_2, F(\lambda_2))$, then we have

$$y(x) = \frac{F(\lambda_2) - F(\lambda_1)}{x_2 - x_1} \cdot (x - x_1) + F(\lambda_1).$$

If the line y(x) intersects the line y = 0 at the point x_0 , then $y(x_0) = 0$ and hence we have

$$F(\lambda_1) \cdot (x_2 - x_0) + F(\lambda_2) \cdot (x_0 - x_1) = 0.$$
(F2)

From (F1) and (F2), we have $\frac{F(\lambda_1)}{-F(\lambda_2)} = \frac{(x_2 - \xi_0)}{(\xi_0 - x_1)} = \frac{(x_0 - x_1)}{(x_2 - x_0)}$ and so $x_1 + x_2 = x_0 + \xi_0$. From (F1) and

(F2), we also obtain

$$\begin{bmatrix} F(\lambda_1) + F(\lambda_2) \end{bmatrix} \cdot (x_2 - x_1) = \begin{bmatrix} F(\lambda_1) - F(\lambda_2) \end{bmatrix} \cdot (x_0 - \xi_0),$$

$$F(\lambda_1) + F(\lambda_2) = -F(\lambda_2) \cdot \frac{x_0 - \xi_0}{\xi_0 - x_1} = F(\lambda_1) \cdot \frac{x_0 - \xi_0}{x_0 - x_1}.$$

Since $F(\lambda_1) - F(\lambda_2) > 0$, we have two quadratic equations with respect to ξ_0 and x_0 ;

$$\begin{cases} \xi_0^2 - (x_0 + x_1 + \delta_0) \cdot \xi_0 + (x_1 + \delta_0) \cdot x_0 = 0, \\ x_0^2 - (\xi_0 + x_1 + \delta_1) \cdot x_0 + (x_1 + \delta_1) \cdot \xi_0 = 0, \end{cases}$$

where $\delta_0 = \frac{-F(\lambda_2)}{F(\lambda_1) - F(\lambda_2)} \cdot (x_2 - x_1)$ and $\delta_1 = \frac{F(\lambda_1)}{F(\lambda_1) - F(\lambda_2)} \cdot (x_2 - x_1)$. Here since $\delta_1 - \delta_0 = x_0 - \xi_0$,

we first have $x_0 + x_1 + \delta_0 = \xi_0 + x_1 + \delta_1$. Next from (F1), (F2) and $x_1 + x_2 = x_0 + \xi_0$ we also have $(x_1 + \delta_0) \cdot x_0 = (x_1 + \delta_1) \cdot \xi_0$. This shows that above two equations have common roots. Thus we have $x_0 = \xi_0 = (x_1 + x_2)/2$.

5.4.4. An estimate of $(1 + \log p) \cdot E(p)$

By the mean value theorem of [7], there exist points η_1 and η_2 such that $x_1 < \eta_1 < \xi_0 < \eta_2 < x_2$ and $d(\xi_0) - d(x_1) = d'(\eta_1) \cdot (\xi_0 - x_1)$, $g(x_2) - g(\xi_0) = g'(\eta_2) \cdot (x_2 - \xi_0)$. Then we have $g'(\xi_0) \ge g'(\eta_2)$, since g'(t) is the decreasing function on (x_1, x_2) . If the condition (d) holds, then d'(t) > 0 for any $t \in (x_1, x_2)$, hence by $F(\xi_0) = 0$ we have

$$d'(\xi_0) = \frac{d(\xi_0) - d(x_1)}{g(x_2) - g(\xi_0)} \cdot g'(\xi_0) = d'(\eta_1) \cdot \frac{\xi_0 - x_1}{x_2 - \xi_0} \cdot \frac{g'(\xi_0)}{g'(\eta_2)} \ge d'(\eta_1),$$

but this is a contradiction to that d'(t) is the decreasing function, because d''(t) < 0 for any $t \in (x_1, x_2)$. Thus the condition (d) is impossible. From this we have that there exists a point t_0 such that $x_1 < t_0 < x_2$ and $d'(t_0) \cdot g(t_0) \le t_0^{-1}$, and so $f'(t_0) \le d(t_0) \cdot g'(t_0) + t_0^{-1}$. Since x_1 and x_2 were arbitrary taken, it is clear that $t_0 \to p$ as $x_2 \to p$ and we have $f'(p) \le d(p) \cdot g'(p) + 1/p$ as $t_0 \to p$. Therefore we have

$$(1+\log p) \cdot E(p) \le d(p) \cdot \frac{\log^2(p \cdot \alpha_1)}{2 \cdot \sqrt{p}} \cdot \left(1+\frac{4}{\log(p \cdot \alpha_1)}\right) + \frac{1}{p}.$$

5.5. An estimate of $G_0 := (\log p_0 \cdot R(\mathfrak{I}_{m-1}) - (N_0 - N_1)) / N_0$

Here $R(\mathfrak{T}_{m-1}) := \frac{\left(\log\log\mathfrak{T}_{m-1}\right)^2}{2 \cdot \sqrt{\log\mathfrak{T}_{m-1}}} \cdot \left(1 + \frac{4}{\log\log\mathfrak{T}_{m-1}}\right)$. It is known that $p_{k+1}^2 \le p_1 \cdot p_2 \cdots p_k$ for $p_k \ge 7$

by 246p. of [2] and hence $\frac{\log p_0}{\log \mathfrak{T}_{m-1}} < \frac{1}{2} (p \ge e^{14})$. Since $\log(1+t) \ge t \cdot (1-t/2) (0 < t < 1/2)$, first we have

$$N_{0} - N_{1} = \left(\sqrt{\log \mathfrak{T}_{m}} - \sqrt{\log \mathfrak{T}_{m-1}}\right) \cdot \left(\log\log \mathfrak{T}_{m}\right)^{2} + \sqrt{\log \mathfrak{T}_{m-1}} \cdot \left(\left(\log\log \mathfrak{T}_{m}\right)^{2} - \left(\log\log \mathfrak{T}_{m-1}\right)^{2}\right) \ge \frac{\log p_{0}}{2 \cdot \sqrt{\log \mathfrak{T}_{m}}} \cdot \left(\log\log \mathfrak{T}_{m-1}\right)^{2} + \sqrt{\log \mathfrak{T}_{m-1}} \cdot 2 \cdot \log\log \mathfrak{T}_{m-1} \cdot \left(\log\log \mathfrak{T}_{m} - \log\log \mathfrak{T}_{m-1}\right) = \frac{\log p_{0}}{2 \cdot \sqrt{\log \mathfrak{T}_{m}}} \cdot \left(\log\log \mathfrak{T}_{m-1}\right)^{2} + \sqrt{\log \mathfrak{T}_{m-1}} \cdot 2 \cdot \log\log \mathfrak{T}_{m-1} \cdot \log\left(1 + \frac{\log p_{0}}{\log \mathfrak{T}_{m-1}}\right) \ge \frac{\log p_{0}}{2 \cdot \sqrt{\log \mathfrak{T}_{m}}} \cdot \left(\log\log \mathfrak{T}_{m-1}\right)^{2} + 2 \cdot \log\log \mathfrak{T}_{m-1} \cdot \frac{\log p_{0}}{\sqrt{\log \mathfrak{T}_{m-1}}} \cdot \left(1 - \frac{\log p_{0}}{2 \cdot \log \mathfrak{T}_{m-1}}\right)$$

and

$$\begin{split} &\log p_{0} \cdot R\left(\mathfrak{T}_{m-1}\right) - \left(N_{0} - N_{1}\right) \leq \log p_{0} \cdot \frac{\left(\log \log \mathfrak{T}_{m-1}\right)^{2}}{2 \cdot \sqrt{\log \mathfrak{T}_{m-1}}} - \frac{\log p_{0}}{2 \cdot \sqrt{\log \mathfrak{T}_{m}}} \cdot \left(\log \log \mathfrak{T}_{m-1}\right)^{2} + \\ &+ \log p_{0} \cdot \frac{2 \cdot \log \log \mathfrak{T}_{m-1}}{\sqrt{\log \mathfrak{T}_{m-1}}} - \log p_{0} \cdot \frac{2 \cdot \log \log \mathfrak{T}_{m-1}}{\sqrt{\log \mathfrak{T}_{m-1}}} \cdot \left(1 - \frac{\log p_{0}}{2 \cdot \log \mathfrak{T}_{m-1}}\right) \leq \\ &\leq \frac{\log p_{0}}{2} \cdot \left(\frac{1}{\sqrt{\log \mathfrak{T}_{m-1}}} - \frac{1}{\sqrt{\log \mathfrak{T}_{m}}}\right) \cdot \left(\log \log \mathfrak{T}_{m-1}\right)^{2} + \frac{\log^{2} p_{0}}{\left(\log \mathfrak{T}_{m-1}\right)^{3/2}} \cdot \log \log \mathfrak{T}_{m-1} \leq \\ &\leq \frac{\log^{2} p_{0}}{\left(\log \mathfrak{T}_{m-1}\right)^{3/2}} \cdot \left(\log \log \mathfrak{T}_{m-1}\right)^{2} \cdot \left(\frac{1}{4} + \frac{1}{\log \log \mathfrak{T}_{m-1}}\right). \end{split}$$

On the other hand, it is known $p_{k+1}^2 \le 2 \cdot p_k^2$ for $p_k \ge 7$ by 247p. of [2] and $t - t / \log t < \vartheta(t) (t \ge 41)$ by (3.16) of [6]. So $\log p_0 \le \log p \cdot (1 + \log \sqrt{2} / \log p)$ and if $p \ge e^{14}$ then we have $\alpha_1 \ge (1 - 1/14)$ and

$$G_{0} \leq \frac{\log^{2} p_{0}}{\left(\log \mathfrak{I}_{m-1}\right)^{3/2}} \cdot \left(\log \log \mathfrak{I}_{m-1}\right)^{2} \cdot \left(\frac{1}{4} + \frac{1}{\log \log \mathfrak{I}_{m-1}}\right) \cdot \frac{1}{N_{0}} \leq \frac{\log^{2} p_{0}}{\left(\log \mathfrak{I}_{m-1}\right)^{2}} \cdot \left(\frac{1}{4} + \frac{1}{\log \log \mathfrak{I}_{m-1}}\right) \leq \frac{\log^{3} p}{p \cdot \alpha_{1}^{2}} \cdot \left(1 + \frac{\log \sqrt{2}}{\log p}\right)^{2} \cdot \left(\frac{1}{4} + \frac{1}{\log p + \log \alpha_{1}}\right) \cdot \frac{1}{p \cdot \log p} \leq \frac{0.01}{p \cdot \log p} \left(p \geq e^{14}\right).$$

5.6. An estimate of $S(p') := \sum_{p' \le p \le +\infty} 1/(p \cdot \log p)$

Put $s(t) = \sum_{p \le t} 1/p = \log \log t + b + E(t)$. Then we have

$$\begin{split} S(p') &= \int_{p'}^{+\infty} \frac{1}{\log t} \cdot ds(t) = \int_{p'}^{+\infty} \frac{1}{\log t} \cdot \left(\frac{dt}{t \cdot \log t} + dE(t)\right) = \\ &= \int_{p'}^{+\infty} \frac{dt}{t \cdot \log^2 t} + \frac{E(t)}{\log t} \Big|_{p'}^{+\infty} + \int_{p'}^{+\infty} \frac{E(t)}{t \cdot \log^2 t} \cdot dt \leq \\ &\leq -\frac{1}{\log t} \Big|_{p'}^{+\infty} + \frac{E(t)}{\log t} \Big|_{p'}^{+\infty} + \int_{p'}^{+\infty} \frac{1}{t \cdot \log^4 t} \cdot dt \leq \\ &\leq \frac{1}{\log p'} - \frac{E(p')}{\log p'} + \int_{p'}^{+\infty} \frac{1}{t \cdot \log^4 t} \cdot dt \leq \\ &\leq \frac{1}{\log p'} + \frac{1}{\log^3 p'} - \frac{1}{3 \cdot \log^3 t} \Big|_{p'}^{+\infty} = \frac{1}{\log p'} + \frac{4}{3 \cdot \log^3 p'} \\ \text{and } S(p') \geq -\frac{1}{\log t} \Big|_{p'}^{+\infty} + \frac{E(t)}{\log t} \Big|_{p'}^{+\infty} - \int_{p'}^{+\infty} \frac{1}{t \cdot \log^4 t} \cdot dt \geq \frac{1}{\log p'} - \frac{4}{3 \cdot \log^3 p'}. \text{ If } p' \text{ is a first prime} \geq e^{14} \,, \end{split}$$

then p' = 1202609 and it is 93118-th prime. And we have $0.06 \le S(p') \le 0.08$. Now we are ready for the proof of the following lemma. Lemma. For any $m \ge 4$ we have $C_m < 1$.

proof. Let $D_m = p_m \cdot (e'_0 - \alpha_0) / (\sqrt{p_m \cdot \alpha_0} \cdot \log^2 (p_m \cdot \alpha_0)) (m \ge 4)$. Then $C_m < 1$ is equivalent to $D_m < 1$. And we here have $D_m < 1$ for $7 \le p_m \le e^{14}$ and $D_m \le a_m := 1 - 11 \cdot S(p_m)$ for any $p_m \ge e^{14}$. In fact, it is easy to see that for $7 \le p_m \le e^{14}$ by MATLAB (see the table 1 and the table 2)

$$\mathfrak{R}_{m} \coloneqq \log\left(e^{-\gamma} \cdot F_{m}\right) - \log\log\left(\log\mathfrak{I}_{m} + \sqrt{\log\mathfrak{I}_{m}} \cdot \left(\log\log\mathfrak{I}_{m}\right)^{2}\right) < 0$$

Next, p' = 1202609 then we have $D_{93118} = 0.01038 \dots \le 0.1 \le 1 - 11 \cdot S(p') \le 0.4 < 1$. Now assume $p \ge e^{14}$ and $D_{m-1} \le a_{m-1}$. Let us see $D_m \le a_m$. We have

$$\begin{split} D_{m} &= \frac{p_{0} \cdot \left(e_{0}' - \alpha_{0}\right)}{N_{0}} = \frac{1}{N_{0}} \cdot \left(p \cdot \left(e_{1}' - \alpha_{1}\right) + K_{0}\right) = D_{m-1} \cdot \frac{N_{1}}{N_{0}} + \frac{K_{0}}{N_{0}} \leq \\ &\leq a_{m-1} \cdot \frac{N_{1}}{N_{0}} + \frac{1}{N_{0}} \cdot \log p_{0} \cdot \left(\mu \cdot e_{1}' - 1\right) \leq a_{m-1} + b_{m-1} \,, \end{split}$$

where $b_{m-1} = (\log p_0 \cdot (\mu \cdot e'_1 - 1) - a_{m-1} \cdot (N_0 - N_1)) / N_0$. We have to obtain $b_{m-1} \le 11 / (p \cdot \log p)$. By the assumption $D_{m-1} \le a_{m-1}$, we have

$$e_{1}^{\prime} \leq \alpha_{1} + a_{m-1} \cdot \frac{\sqrt{p \cdot \alpha_{1}} \cdot \log^{2}(p \cdot \alpha_{1})}{p} = \alpha_{1} \cdot \left(1 + a_{m-1} \cdot \frac{\log^{2}(p \cdot \alpha_{1})}{\sqrt{p \cdot \alpha_{1}}}\right)$$

and by taking logarithm of both sides we have $\log e_1' = \log p \cdot (e_1 - 1) \le \theta(p) + a_{m-1} \cdot \frac{\log^2(p \cdot \alpha_1)}{\sqrt{p \cdot \alpha_1}}$.

We also have

$$e_{1} \leq 1 + \frac{1}{\log p} \cdot \left(\theta\left(p\right) + a_{m-1} \cdot \frac{\log^{2}\left(p \cdot \alpha_{1}\right)}{\sqrt{p \cdot \alpha_{1}}}\right), \quad E\left(p\right) + \varepsilon_{0}\left(p\right) \leq \frac{1}{\log p} \cdot \left(\theta\left(p\right) + a_{m-1} \cdot \frac{\log^{2}\left(p \cdot \alpha_{1}\right)}{\sqrt{p \cdot \alpha_{1}}}\right).$$

Thus we see $p \cdot \log p \cdot E(p) - p \cdot \theta(p) \le \frac{a_{m-1}}{\sqrt{\alpha_1}} \cdot \sqrt{p} \cdot \log^2(p \cdot \alpha_1) - p \cdot \log p \cdot \varepsilon_0(p)$ and $d(p) = \frac{f(p)}{g(p)} = \frac{p \cdot \log p \cdot E(p) - p \cdot \theta(p)}{\sqrt{p} \cdot \log^2(p \cdot \alpha_1)} \le \frac{a_{m-1}}{\sqrt{\alpha_1}} - \frac{p \cdot \log p \cdot \varepsilon_0(p)}{\sqrt{p} \cdot \log^2(p \cdot \alpha_1)}.$

By above 5.4, we have

$$(1+\log p) \cdot E(p) \le d(p) \cdot \frac{\log^2(p \cdot \alpha_1)}{2 \cdot \sqrt{p}} \cdot \left(1+\frac{4}{\log(p \cdot \alpha_1)}\right) + \frac{1}{p} \le$$

$$= a_{m-1} \cdot \frac{\log^2(p \cdot \alpha_1)}{2 \cdot \sqrt{p \cdot \alpha_1}} \cdot \left(1+\frac{4}{\log(p \cdot \alpha_1)}\right) - \frac{\log p \cdot \varepsilon_0(p)}{2} \cdot \left(1+\frac{4}{\log(p \cdot \alpha_1)}\right) + \frac{1}{p} \le$$

$$\le a_{m-1} \cdot \frac{\log^2(p \cdot \alpha_1)}{2 \cdot \sqrt{p \cdot \alpha_1}} \cdot \left(1+\frac{4}{\log(p \cdot \alpha_1)}\right) - (1+\log p) \cdot \varepsilon_0(p) + \frac{1}{p},$$

$$= \log p \left(q - q - q\right)$$

since $\varepsilon_0(p) < 0$ and $\frac{\log p}{2} \cdot \left(1 + \frac{4}{\log(p \cdot \alpha_1)}\right) \le (1 + \log p) (p \ge e^{14}, \alpha_1 \ge 1 - 1/14)$. Thus we see

$$(1+\log p)\cdot \left(E\left(p\right)+\varepsilon_{0}\left(p\right)\right) \leq a_{m-1}\cdot \frac{\log^{2}\left(p\cdot\alpha_{1}\right)}{2\cdot\sqrt{p\cdot\alpha_{1}}}\cdot \left(1+\frac{4}{\log\left(p\cdot\alpha_{1}\right)}\right)+\frac{1}{p}\cdot \frac{1}{p}$$

If $e_1 > 1$, then, since $0 < a_{m-1} \le 1$, we also have

$$(1+\log p)^{2} \cdot \left(E\left(p\right)+\varepsilon_{0}\left(p\right)\right)^{2} \leq \left(\frac{\log^{2}\left(p\cdot\alpha_{1}\right)}{2\cdot\sqrt{p\cdot\alpha_{1}}}\cdot\left(1+\frac{4}{\log\left(p\cdot\alpha_{1}\right)}\right)+\frac{1}{p}\right)^{2} \leq \\ \leq \frac{\log^{4}\left(p\cdot\alpha_{1}\right)}{p\cdot\alpha_{1}}\cdot\left(\frac{1}{2}+\frac{2}{\log\left(p\cdot\alpha_{1}\right)}+\frac{\sqrt{\alpha_{1}}}{\sqrt{p}\cdot\log^{2}\left(p\cdot\alpha_{1}\right)}\right)^{2} \leq 0.4143\cdot\frac{\log^{4}\left(p\cdot\alpha_{1}\right)}{p\cdot\alpha_{1}}.$$

and

$$\begin{split} &\log p_{0} \cdot (\mu \cdot e_{1}' - 1) - a_{m-1} \cdot (N_{0} - N_{1}) \leq \\ &\leq \log p_{0} \cdot (1 + \log p) \cdot (E(p) + \varepsilon_{0}(p)) - a_{m-1} \cdot (N_{0} - N_{1}) + 0.55 \cdot \frac{\log^{2} p_{0}}{p} + \\ &+ 0.61 \cdot \log p_{0} \cdot (1 + \log p)^{2} \cdot (E(p) + \varepsilon_{0}(p))^{2} \leq \\ &\leq G_{0} \cdot N_{0} + 0.253 \cdot \log p_{0} \cdot \frac{\log^{4}(p \cdot \alpha_{1})}{p \cdot \alpha_{1}} + \frac{\log^{2} p_{0}}{p} \cdot \left(0.55 \cdot + \frac{1}{\log p_{0}}\right). \end{split}$$

Finally, we have

$$\begin{split} b_{m-1} &\leq G_0 + 0.253 \cdot \log p_0 \cdot \frac{\log^4 \left(p \cdot \alpha_1 \right)}{p \cdot \alpha_1 \cdot N_1} + 0.622 \cdot \frac{\log^2 p_0}{p \cdot N_1} \leq \\ &\leq G_0 + 0.253 \cdot \frac{\left(\log p + \log \sqrt{2}\right)}{\sqrt{p} \cdot \alpha_1^{3/2}} \cdot \frac{\log p \cdot \left(\log p + \log \alpha_1\right)^2}{p \cdot \log p} + \\ &+ 0.622 \cdot \frac{\log p}{\sqrt{p \cdot \alpha_1}} \cdot \left(1 + \frac{\log \sqrt{2} - \log \alpha_1}{\log p + \log \alpha_1}\right)^2 \cdot \frac{1}{p \cdot \log p} \leq \\ &\leq \frac{0.01}{p \cdot \log p} + \frac{10.251}{p \cdot \log p} + \frac{0.01}{p \cdot \log p} \leq \frac{11}{p \cdot \log p} \left(p \geq e^{14}\right). \end{split}$$
in we have
$$b_{m-1} \leq 0.55 \cdot \frac{\log^2 p_0}{p \cdot N_1} \leq \frac{0.01}{p \cdot \log p} \left(p \geq e^{14}\right). \Box$$

Next, if $e_1 \leq 1$ ther $p \cdot N_1 = p \cdot \log p$

6. Proof of Theorem 2

Let $n = q_1^{\lambda_1} \cdots q_m^{\lambda_m}$ be the prime factorization of any natural number $n \ge 2$. Then it is clear $p_m \le q_m$. If $7 \le p_m \le e^{14}$, then we have $C_m < 1$, since $\Re_m < 0$ (see the table 1 and the table 2), and if $p_m \ge e^{14}$ then we have $C_m < 1$ by the Lemma. Therefore we have $\Phi_0(n) \le \Phi_0(\mathfrak{T}_m) = C_m \le \max_{m \ge 1} \{C_m\} \le 24$.

7. Proof of Corollary

From the theorem 1 and theorem 2, for $n \ge 5$ we have

$$\frac{n}{\varphi(n)} \le e^{\gamma} \cdot \log \log n + e^{\gamma} \cdot \left(1 + \frac{\log 24 \cdot (\log \log n)^{-2}}{\sqrt{\log n}}\right) \cdot \frac{(\log \log n)^2}{\sqrt{\log n}} \le \\ \le e^{\gamma} \cdot \log \log n + 21.483 \cdot \frac{(\log \log n)^2}{\sqrt{\log n}}.$$

8. Note and Algorithm

The table 1 shows the values $C_m = \Phi_0(\mathfrak{T}_m)$ and \mathfrak{R}_m to $\omega(n) = m$ of $n \in N$. There are only values of C_m and \Re_m for $1 \le m \le 10$ here. But it is not difficult to verify them for $31 \le p_m \le e^{14}$. Note, if more informations, then it should be taken $\Re_m < 0$, not $C_m < 1$, for $263 \le p_m \le e^{14}$, by reason of the limited values of MATLAB 6.5. The table 2 shows the valuates \Re_m for 93109 $\leq m \leq$ 93118. Of course, all the values in the table 1 and the table 2 are approximate.

The algorithm for \mathfrak{R}_m to $\omega(n) = m$ by MATLAB is as follows: Function Phi-Index, clc, gamma=0.57721566490153286060; format long P=[2, 3, 5, 7, ..., 1202609]; M=length(P);for m=1:M; p=P(1:m); q=1-1./p; F=-gamma+log(prod(1./q)); N1=sum(log(p.^1)); N2=(N1)^(1/2); N3=(log(N1))^2; N4=N2*N3; N5=N1+N4; m, Pm, Rm=F-log(log(N5)), end

т	p_m	C_m	\mathfrak{R}_m		
1	2	9.66806133818849	-		
2	3	23.15168798263150	0.73259862957209		
3	5	7.73864609733096	0.14633620860732		
4	7	0.83171792006862	-0.00636141995881		
5	11	0.01114282713904	-0.09308687002330		
6	13	1.102119966548700e-004	-0.12730939385590		
7	17	3.834259945131073e-007	-0.15077316854133		
8	19	1.397561045763582e-009	-0.15960912308179		
9	23	2.821898264763264e-012	-0.16612788105591		
10	29	2.081541289212468e-015	-0.17415284347098		

Table 1

Га	bl	e	2	
ıч	-		_	

т	p_m	\mathfrak{R}_m
93109	1202477	-0.01154791933871
93110	1202483	-0.01154786567870
93111	1202497	-0.01154781201949
93112	1202501	-0.01154775835370
93113	1202507	-0.01154770468282
93114	1202549	-0.01154765103339
93115	1202561	-0.01154759738330
93116	1202569	-0.01154754372957
93117	1202603	-0.01154749009141
93118	1202609	-0.01154743644815

Acknowledgments. We would like to thank all of them, whose have an interesting in this article.

References

- [1] P. Sole, M. Planat, Robin inequality for 7-free integers,
 - arXiv: 1012.0671v1 [math.NT] 3 Dec 2010.
- [2] J. Sandor, D. S. Mitrinovic, B. Crstici, Handbook of Number theory 1, Springer, 2006.
- [3] H. L. Montgomery, R. C. Vaugnan, Multiplicative Number Theory, Cambridge, 2006.
- [4] J. C. Lagarias, An elementary problem quivalent to the Riemann hypothesis, Amer. Math. Monthly 109 (2002), 534-543
- [5] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothese de Rimann, Journal of Math. Pures et appl. 63 (1984), 187-213
- [6] J. B. Rosser, L. Schoenfeld, Approximate formulars for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
- [7] Sudhir R. Ghorpade, Balmohan V. Limaye, A Course in Calculus and Real Analysis, Springer, 2006
- [8] J. L. Nicolas, Small values of the Euler function and the Riemann hypothesis, arXiv: 1202.0729v2 [math.NT] 5 Apr 2012.

2010 Mathematics Subject Classification; 11M26, 11N05.