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This paper is dedicated to everyone who has gazed at the integers and seen the prime wonder.

Abstract. The k-tuple Conjecture is true. The pure elimination sieve finds all

prime instances of a k-tuple H. Sieve function conjunction yields a O(x1/2−ε)

bound on the prime counting functions. Admissible k-tuples occur infinitely
with asymptotic order ∼ Sx/(lnx)k. The maximum gap between primes is at

most O(
√
x/ lnx). Many conjectures are closed. Computation is confounded.

We speculate on a potential approach to the Riemann Hypothesis.
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1. The Pure Elimination Sieve finds all k-tuple Prime Instances

Given an admissible k-tuple H, k ∈ Z+ [1]. Without loss of generality assume
0 ∈ H with positive even integers. Call L ≡ L(H) = maxh ∈ H the length of the
tuple (one less than the other common definition). Let H ≡ H(H) ⊂ P be the set
of smallest prime instances p of H, and πH(x) count those

(1.1) πH(x) =

p∈H∑
p≤x

1 H = {p 3 p+H ⊂ P}

We ask: is πH(x) unbounded? If so, what is its asymptotic order?
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Let pa be the ath prime and Pa be the ath primorial, Pa =
∏a
i=1 pi.

We mimic the Sieve of Eratosthenes [2] and use a pure elimination sieve (PES).
At each step a ∈ Z+, we remove every integer that can’t be in H, crossing off up
to k residues for each prime. n+ h is composite =⇒ n 6∈ H. The PES eliminates
all composite and some prime n, when k ≥ 2. At step a we resolve all integers

(1.2) n+ h ≡ 0 mod pa ⇐⇒ n ≡ −h mod pa ∀h ∈ H
One of these will be pa, the prime for that step. If that wasn’t already crossed off,
then pa ∈ H(s). All other residues can’t be in H due to composite interference since
pa also divides n+ h+ jPa, j ∈ Z+. Define our sieve counting function as

(1.3) π
(s)
H (x) =

p∈H(s)∑
p≤x

1 H(s) = {pa 6≡ −h mod p ∀h ∈ H,∀p < pa}

Clearly H ⊂ H(s), as the sieve eliminates all integers not in H, and only those.
However, the sieve can declare false positives. How many errors might it make?

Theorem 1.1 (Exact Match Region). Let pE be the prime satisfying

(1.4) p2
E − pE ≤ L p2

E+1 − pE+1 > L p0 = 0

where L is the length of H. Then the PES has at most E false positive errors

(1.5) π
(s)
H (x)− E ≤ πH(x) ≤ π(s)

H (x) x > 0 E ≥ 0

and these occur in the first E steps (p ∈ H(s), p 6∈ H =⇒ p ≤ pE).

Proof. Recall we only need to check the prime factors of an integer n up to
√
n. pa

is assured when pa < p2
a − L, as no integers are resolved between pa and p2

a − L at
the ath step. So after the Eth step all sieved p ∈ H(s) are genuinely in H, as are all
sieved candidates in the region pa to p2

a − L. �

The PES has compelling merits. It is simpler than more sophisticated methods
[3] [4] [5] [6], counts all instances, and is nearly exact with trivial overcounting.

1.1. A Twin Prime Example that readily Generalizes. Let H = (0, 2), the
twin prime 2-tuple [7]. Then on the first step

primes = pi n 1O 2 = integer equivalence classes of ZP1

2 r1 1 0 = residues mod pa
↑ = just resolved, O = candidates

We declare p1 = 2 ∈ H(s), our one error E = 1. All integers n > 2 with residue
r1 ≡ 0 = −2 mod 2 are resolved: none are in H. Odd n are still candidates.

We form ZP2
by duplicating ZP1

p2 = 3 times. After resolving we see the well
known modulo 6 result

pi n 1 2 3 4 5O 6 ZP2

2 r1 1 0 1 0 1 0
3 r2 1 2 0 1 2 0

↑ ↑ × × × = already done

We’ve resolved two entries, but only pa can be part of an instance.

r = 3 = p2 =⇒ twin prime {3, 5} =⇒ 3 ∈ H 3 + jP2 6∈ H, j ≥ 1
r = 1 6= p2 =⇒ 1 + jP2 6∈ H, j ≥ 0
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We form ZP3
by duplicating ZP2

p3 = 5 times

pi n 1 2 3 4 5 6 7 8 9 1011O12 1314151617O18 19 20 21 22 23 24 25 26 27 28 29O 30
2 r1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
3 r2 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
5 r3 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

× ↑ × × × × × × ↑ × × ×

r = 5 = p3 =⇒ twin prime 5 +H =⇒ 5 ∈ H 5 + jP3 6∈ H, j ≥ 1
r = 23 6= p3 =⇒ 23 + jP3 6∈ H, j ≥ 0

Further iteration produces all remaining twin primes, though not at every step.
To illustrate, 7, 13, 19, and 23 are primes but are eliminated as candidates along
with all integers with those residues mod 30, because 9, 15, 21, and 25 mod 30 are
composite. Only primes that are 11, 17, or 29 mod 30 are still viable candidates.
All prime steps are taken, twin or not. At each step we disqualify a fraction of the
primes, but a non-zero fraction always remains to consider, in an asymptotic sense
a la Dirichlet’s Theorem [8].

2. The Bound on Conjunctions of Sieve Functions is O(x1/2−ε)

Definition 2.1. Since residues can overlap, we may cross off less than the full k.
Let νp ≡ νp(H) count the distinct residues −h mod p among h ∈ H. 1 ≤ νp ≤ k
always and eventually νp = k once p > L. Admissible H ⇐⇒ νp < p ∀p.

Definition 2.2. Define the phi-H function akin to the Legendre phi function
φ(x, a) for the primes, namely that it counts all candidates still remaining at the
ath step of the sieve. The value at the primorial is

(2.1) φH(Pa, a) =
∏
p≤pa

(p− νp) =
pa>L

∏
p≤L

(p− νp)
∏

L<p≤pa

(p− k)

and the Exact Match Region in Theorem 1.1 means that for a = π(
√
x+ L) > E

(2.2) πH(x)− πH(
√
x+ L) = φH(x, a)− φH(

√
x+ L, a) pa < x < p2

a − L

Our goal is to bound πH(x) at x, which we achieve by developing the best
bounded linear approximation Kmx to φH(x, a) on the interval [

√
x+ L, x]. Let

us extract some constructive properties from phi-H that we’ll need.

Definition 2.3. Let s(x) be an integer counting function with s(0) = 0. s(x) is a
sieve function if it is periodic with finite period ρ =

∏
p and r = s(ρ), 0 < r < ρ.

ρ must be single primes with no multiplicity; two sieve functions s1(x) and s2(x)
are compatible if gcd(ρ1, ρ2) = 1 ⇐⇒ ρ = ρ1ρ2 is a valid period.

We interpret a sieve function staying flat at n to mean that integer is eliminated,
while when it jumps n is still a possible candidate. Observe 0 < m = r/ρ < 1.

φH(x, a) has period ρ = Pa and φH(0, a) = 0. From Equation (2.1) we know
φH(Pa, a) < Pa and is non-zero for admissible H ⇐⇒ φH(x, a) is a sieve function.

Theorem 2.4 (Sieve Function Bound). A sieve function s(x) is bounded by

(2.3) −λ < s(x)−mx ≤ +υ λ = −s(l−) +ml ≥ 0 υ = s(u)−mu ≥ 0

Either bound can only be tight when s(n) jumps; l and u are those spots.
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Proof. Since s(0) = 0 and is periodic, then s(nρ) = nr. Thus, mx intersects it
infinitely often at nρ. Consider all lines mx + b. The bound lines have to hit a
corner to be tight, i.e. s(n) jumps there. If u is the upper corner, then (u, s(u)) is
on the upper bound line. If l is the lower corner, then (l, s(l − ε)) is on the lower
bound line. Solving for b in each case gives the results.

[The ε and non-symmetric inequalities are because counting functions favor the
top of a step when they jump, which is a niggling yet negligible subtlety. The
peculiar −λ and +υ are to emphasize positivity and make the bounds clearer.] �

Definition 2.5. Let s1(x) and s2(x) be two compatible sieve functions. Their
conjunction sieve function c(x) ≡ (s1 ∧ s2)(x) jumps at n iff both s1(n) and s2(n)
jump (still a candidate). c(x) has period ρ = ρ1ρ2 and from the magic of primality
r = r1r2. Conjunction is commutative, associative, and may be done in any order.

[“∧” is logical AND, not to be confused with the von Mangoldt function Λ(n).]

Theorem 2.6 (Prime Conjunction). Let s1(x) and s2(x) be two compatible sieve
functions. Then

(2.4) lim
x→∞

s1(x) s2(x)

x(s1 ∧ s2)(x)
= 1 =⇒ c(x) = (1 + ε(x))

s1(x) s2(x)

x

For convenience denote (1 + ε(x)) as (1ε). The conjunction is bounded by

(2.5)
−(1ε)(m2λ1 +m1λ2 − 1

xλ1λ2) < c(x)− (1ε)m1m2x
≤ +(1ε)(m2υ1 +m1υ2 + 1

xυ1υ2)

and (1ε) is explicitly

(2.6) (1 + ε(x)) = 1 +
b−m1b2 −m2b1

m1m2x
+O

(
1

x2

)
where −λi < bi ≤ +υi and b uses the bounds from Equation (2.5).

Proof. From Theorem 2.4 si(x) ∼ mix and c(x) ∼ m1m2x, so the limit is simply
balancing lead order terms. The limit also gives us ε(x)→ 0 as x→∞.

Expressing si(x) = mix+ bi, the product becomes

(2.7)
s1(x) s2(x)

x
= m1m2x+ (m1b2 +m2b1) +

b1b2
x

For the conjunction upper bound, use bi = υi; for the lower, use bi = −λi and note
(−λ1)(−λ2) = +λ1λ2. Using c(x) = m1m2x+ b and solving gives (1ε)

(2.8) (1ε) =
m1m2x+ b

m1m2x+ (m1b2 +m2b1) + 1
xb1b2

=
1 + b

m1m2x

1− −(m1b2+m2b1)
m1m2x

+O
(

1
x2

)
Use 1/(1− y) = 1 + y + . . ., multiply, and only keep the two 1/x terms. �

Though it looks innocent and innocuous, the Prime Conjunction Theorem 2.6 is
the crux of a new form of prime analysis. Let’s leverage it for some amazing results.

Theorem 2.7. The phi-H function is bounded by

(2.9) −λ(x) < φH(x, a(x))− (Kε)m(x)x < υ(x)

where a(x) = π(
√
x+ L), λ(x) and υ(x) are both O (m(x) a(x)), and

(2.10) (Kε) ≡ (Kε)(x) =

a−1∏
(1 + ε(x)) m(x) =

∏
p≤
√
x+L

(
p− νp
p

)
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Proof. φH(x, a) is the conjunction of the sieve functions sp(x) for the first a primes.
Using Theorem 2.4, a single prime has ρ = p, r = p − νp, mp = (p − νp)/p, and
once p > L+ 1 then l = 1, u = p− L− 1. Since sp(l

−) = 0 and sp(u) = p− L− 1

(2.11) −p− νp
p

< sp(x)− p− νp
p

x ≤ +
p− L− 1

p
νp p > L+ 1

For p ≤ L + 1 either bound may go as high as p−1
p νp. Recall 1 ≤ νp ≤ k from

Definition 2.1 and
∑
p<x

1
p → ln lnx+M , the Meissel-Mertens Constant [9]. Thus,

(2.12)
λΣ(x) ≡

∑
λp = a(x)− k ln ln

√
x+ L+O (1)

υΣ(x) ≡
∑
υp = k a(x)− k (L+ 1) ln ln

√
x+ L+O (1)

which are both clearly O (a(x)). [The O (1) constants also depend on H.]
Since pi and Pi−1 are compatible when i ≥ 2, apply Theorem 2.6 a − 1 times

with s1(x) = sp(x) a single prime and s2(x) = (
∧
q<p sq)(x) the conjunction of all

primes before p. Use induction on Equation (2.4) to get (Kε) and m(x)

(2.13) φH(x, a) = (Kε)
1

xa−1

∏
p≤pa

sp(x) = (Kε)m(x)x
∏
p≤pa

(1 +
bp
mpx

)

We handle the bounds as before, setting bp = υp. Expanding the product we get

(2.14)
∏

= 1 +
1

x

∑
i

υi
mi

+
1

x2

∑
i<j

υi
mi

υj
mj

+
1

x3

∑
i<j<l

υi
mi

υj
mj

υl
ml

+ . . .

Let us relax the bound. First let A = maxp 1/mp and pull it outside each sum,
then include higher multiplicity cross terms for a simpler expression

(2.15)
∏
≤ 1 +

A

x
υΣ(x) +

A2

x2
υ2

Σ(x) +
A3

x3
υ3

Σ(x) + . . . ≤ 1

1− A
x υΣ(x)

This yields an upper bound of the stated order

(2.16) υ(x) = A(Kε)m(x) υΣ(x) +O

(
m(x) a2(x)

x

)
Using bp = −λp for the lower bound gives Equation (2.14) alternating signs. Forgive
even degree positive terms and a similar result holds with O

(
m(x) a3(x)/x2

)
. �

Theorem 2.8 (H-Counting Function Bound). πH(x) is bounded by

(2.17) −λ(x) < πH(x)− [(Kε)m(x)x+ πH(
√
x+ L)− φ1] < υ(x) a(x) > E

with functions as from Theorem 2.7, E as from Theorem 1.1, and

(2.18)
λ(x) = Aλ(Kε)m(x)[ a(x)− k ln ln

√
x+ L+O (1) ] + o (1)

υ(x) = Aυ(Kε)m(x)[ k a(x)− k (L+ 1) ln ln
√
x+ L+O (1) ] + o (1)

where A = max(Aλ, Aυ) ≤ maxp≤k+1 p/(p− νp) ≤ k + 1 and A→ 1 as x→∞.

Proof. Rearrange Equation (2.2) and apply Theorem 2.7 to get the bounds

(2.19) πH(x) = φH(x, a(x)) + πH(
√
x+ L)− φH(

√
x+ L, a(x))

Note φ1 = φH(
√
x+ L, a) = φH(1, a) is just 0 or 1 if residue 1 is eliminated or not.

Average the whole weighted sum in Equation (2.14) with AυυΣ =
∑
υp/mp instead

of bounding individual terms. Since 1/mp → 1 and the excess is O
(
ln ln
√
x+ L

)
small, eventually Aυ → 1, as does Aλ and A. �
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3. The k-Tuple Conjecture is True

Let us convert everything asymptotically into the usual elementary functions.

Theorem 3.1. Mertens products can be re-expressed

(3.1)
∏

k<p≤x

(
p− k
p

)
=
eS(k)eδk(x)

ekγ (lnx)
k

S(k) =
∑
p≤k

k

p
S(1) = 0

where γ ≈ 0.57721 is the Euler-Mascheroni Constant [10] and δk(x)→ 0 as x→∞.

Proof. The excellent treatment [11] on Mertens Theorem [12] has explicit error:

(3.2)
∏
p≤x

(
p− 1

p

)
=

eδ(x)

eγ lnx
|δ(x)| < β(x) =

4

ln(x+ 1)
+

2

x lnx
+

1

2x

where eγ ≈ 1.78107 and δ(x)→ 0 as x→∞. Log both sides and expand the logs

(3.3)
∑
p≤x

ln

(
1 +
−1

p

)
=
∑
p≤x

−1

p
+O

(
1

p2

)
= −γ − ln lnx+ δ(x)

Repeating for our k products

(3.4)
∑

k<p≤x

ln

(
1 +
−k
p

)
=

∑
k<p≤x

−k
p

+O

(
1

p2

)
= S(k)− kγ − k ln lnx+ δk(x)

with S(k) and δk(x) as given. Exponentiate both sides to finish. �

The behavior of (Kε) bears special mention. When a is fixed, the finite product
(Kε)→ 1 as x→∞, giving the slope m(p2

a −L). When a = π(
√
x+ L), then (Kε)

becomes an infinite product that converges to a different constant.

Theorem 3.2. Let (Kε) be as Theorems 2.7 and 2.8. Then

(3.5) (Kε)→
ekγ

2k
x→∞

Proof. From the PNT [13] [14] π(x) ∼ Li(x) ∼ x/ lnx, so O (a(x)) = O (
√
x/ lnx).

Since the lead order terms in Theorem 2.8 must balance, we deduce from k = 1

(3.6) (Kε)→
eγ

2
≈ 0.89 < 1 x→∞ =⇒ (Kε) =

eγ

2
eδ(x) δ(x)→ 0

Return to Equation (2.6) where s1(x) = sp(x), s2(x) = cumulative conjunction,
m1 = 1 − νp/p → 1, m2 = O

(
(lnx)−k

)
, and |b1| ≤ k << |b, b2| ≤ O (m(x)a(x)).

Thus, m2b1 becomes negligible and b = (1 + ε′)b2 are comparable. The worst case
is b ∼ b2 near the bound m(x)a(x), cancelling m(x) = m1m2 in the denominator

(3.7) (1 + ε(x)) = 1 + (1−m1)O

(
a(x)

x

)
= 1 +

νp
p
O

(
1√
x lnx

)
More precisely, each (1ε) term is 1/xCp , where 1/2 + ε < Cp(x) ≤ 1. We massage
(Kε) and use a similar argument as Theorem 3.1 to get

(3.8) (Kε) =
∏[

1 +
k

p
O

(
1

xCp

)]
=
ekγ

2k
eδk(x)

eS(k,x)
S(k, x) =

∑
p≤k

k

p
O

(
1

xCp

)
The 1/xCp forces S(k, x)→ 0 as x→∞, along with finite νp to k corrections. �

Taking stock, we see the bound on our counting functions is a very fine x1/2−ε.
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Theorem 3.3 (k-Tuple Proof). Given an admissible k-tuple H, then

(3.9) πH(x) ∼ S
x

(lnx)k
= (Kε)m(x)x x→∞

where S is the singular series, S(k) =
∑
p≤k

k
p , and M is a convenience

(3.10) S ≡ S(H) = eS(k)M M ≡M(H) =
∏
p≤k

p− νp
p

∏
k<p≤L

p− νp
p− k

Observe inadmissible H ⇐⇒ M = 0 = S ≡ admissible H ⇐⇒ M,S ∈ R+.

Proof. Recall νp = k when p > L from Definition 2.1. Then from Theorem 3.1

(3.11) m(x) =
∏

p≤
√
x+L

(
p− νp
p

)
= M

∏
k<p≤

√
x+L

(
p− k
p

)
→ 2k

ekγ
S

1

(lnx)k

as x → ∞. Apply Theorem 2.8 and the sub-orders vanish. The first constant
cancels (Kε) from Theorem 3.2, leaving just the singular series. �

3.1. The Maximum Gap between Instances is at most O(
√
x/ lnx).

Theorem 3.4 (Square Root Prime Gap). Let GH(x) be the maximum gap around
x between prime instances of H. Then GH(x) is bounded by

(3.12) GH(x) ≤ A(λΣ(x) + υΣ(x)) + o (1) ∼ 2(k + 1)

√
x

lnx
x→∞

Proof. Since run=rise/slope the maximum run is limited by the bounded rise

(3.13) GH(x) ≤ λ(x) + υ(x)

(Kε)m(x)
= A(λΣ(x) + υΣ(x)) +O

(
a2(x)

x

)
The denominator cancels from Equation (2.16) and A → 1 from Theorem 2.8.
Equation (2.12) gives a slightly tighter bound, if needed. �

4. Numerous Conjectures are Closed and Affected

The k-tuple Conjecture is a central result from which many others follow. For
example, we’ve also disproven the second Hardy-Littlewood Conjecture π(x+ y) ≤
π(x) + π(y), as the two are incompatible [15]. [Note k-tuple is known by other
names, aka the first Hardy-Littlewood Conjecture, Prime Constellation, etc.]

The Polignac Conjecture [16] is k-tuple for k = 2. Since H = (0, 2n) is always
admissible, all even separations occur infinitely between pairs of primes, including
well known special cases like Twin Primes, Cousin Primes, Sexy Primes, etc.

Goldbach-like conjectures [17] on the differences of primes follow. To illustrate,
Polignac implies every even integer is the difference of two primes (infinitely, both
consecutively and non-consecutively to boot).

The Square Root Prime Gap unconditionally improves the θ bound to 1
2−ε from

0.525 [18] [19]. Any conjecture of “Does a prime exist in {this linear interval}?” is
true. Several results of this kind are already known [20] [21] [22] [23].

Moreover, the finer square root order conjectures have been proven:

• Oppermann - there are primes between n(n− 1), n2, and n(n+ 1) [24]
• Andrica - the next prime gap is bounded by 2

√
p+ 1 [25] [26]

• Legendre - there is a prime between perfect squares [27]
• Brocard - there are at least four primes between prime squares [28]
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Keep in mind that equivalents of these conjectures are true for admissible k-
tuples. In one fell swoop we have proven they hold not only for the primes but
for all k. [When generalizing we must qualify “eventually after {this condition}”
because of possible initial finite failure a la E in Theorem 1.1.] In fact, we expect
that many prime results translate to k-tuples, especially if there is a clean “sieve-
based” interpretation. For example, we could prove a k-Dirichlet’s Theorem using
an H-totient function, thereby establishing valid arithmetic progressions, etc.

5. Practical Computation of πH(x) has a Serious Confound

Thus far, our method has been the goose that laid the golden results. But it
suffers from a major flaw: it’s useless to actually compute πH(x). In Equation
(2.13) (Kε) is defined using the true value of φH(x, a)... the goal of computation!
Our slick analytic trick is at the same time an epic practical drawback.

Let’s work through what an implementation would look like. Define

(5.1) σ(x) =
1

xa−1

∏
p<
√
x+L

sp(x) =⇒ πH(x) = (Kε)σ(x) + πH(
√
x+ L)− φ1

[Note the Mertens product m(x) was just a tool used to establish asymptotic order,
the limit of (Kε), and bounded behavior. It isn’t needed for calculation.]

More specifically for the primes k = 1, L = 0, a = π(
√
x)

(5.2) π(x) = (Kε)
1

xa−1

∏
p<
√
x

[
(p− 1)

⌊
x

p

⌋
+ (bxc mod p)

]
+ a− 1

The σ(x) product terms involve simple divisor / remainder operations on n = bxc.
The convergence of (Kε) = φ/σ to eγ/2 ≈ .890536 is log order slow

x φ(x, a) σ(x) (Kε)
eγ

2

∑ (n−1)!
(ln x)n

101 3 3.50000 0.857143 1.613222
102 22 23.0480 0.954530 1.270127
103 158 153.819 1.027181 1.095073
104 1, 205 1204.70 1.000245 1.022861
105 9, 528 9655.23 0.986823 0.987375
106 78, 331 80971.2 0.967393 0.967376
107 664, 134 696, 029 0.954175 0.954408
108 5, 760, 227 6, 088, 507 0.946082 0.945249
109 50, 844, 133 54, 166, 914 0.938657 0.938413
1010 455, 042, 919 487, 529, 410 0.933365 0.933108
1011 4, 118, 027, 520 4, 433, 046, 839 0.928938 0.928867
1012 37, 607, 833, 520 40, 638, 211, 759 0.925430 0.925397
1013 346, 065, 309, 192 375, 126, 848, 134 0.922529 0.922506
1014 3, 204, 941, 086, 223 3, 483, 377, 464, 535 0.920067 0.920059
1015 29, 844, 568, 470, 712 32, 511, 482, 032, 519 0.917970 0.917960
1016 279, 238, 335, 272, 470 304, 797, 216, 193, 497 0.916145 0.916141

Apart from (Kε), calculation error would be very manageable. φ1, λp, υp, and mp

are exact and trivial. Choosing x = n ensures σ(x) is rational and incurs no more
than numerical error. πH(

√
x+ L) might introduce some real error, but it would

still be an acceptable sub-square root. (Kε) is the stumbling block.
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5.1. We Conclude with Observations and Further Work. In 1901, von Koch
proved that the Reimann Hypothesis gave the best possible bound for π(x) [29].
Li(x) was O (

√
x lnx) away, we couldn’t do any better, and consequently complex

analysis became a primary focus of attention. So how can we have found a superior
function (Kε)m(x)x, bounded a mere O

(√
x/(lnx)2

)
away, using only a simple

sieve? Von Koch appears to cast serious doubt on our result.
One of my math professors at Caltech had a favorite saying: “If you want to

approximate elephants, use elephant functions.” His point: results are improved
by a closer fit between model and problem. Li(x) is still the best approximation
among monotonic smooth continuous functions. The previous section illustrates we
haven’t found a better one. We’ve just re-represented π(x) itself in a way that is
jagged enough for a snug fit, yet tractable enough to analyze. Von Koch doesn’t
apply, as (Kε)m(x)x isn’t smooth, continuous, or even an independent function.

We’d like to understand (Kε) better: rate of convergence, if it approaches from
above or below, how it sawtooths and oscillates, etc. We know (Kε) and σ(x) have
log expansions, as the two multiplied must match the π(x) ∼ Li(x) (n− 1)!/(lnx)n

expansion. Our interest in (Kε) goes beyond a computational approximation; it
may offer a possible route to attack the Riemann Hypothesis [30]. Corollary 3 on
p.341 of Schoenfeld’s Sharper Bounds II [31] has a Mertens product form

(5.3)

∣∣∣∣∣∣ eγ lnx
∏
p≤x

(
p− 1

p

)
− 1

∣∣∣∣∣∣ < 3 lnx+ 5

8π
√
x

x > 8 ⇐⇒ RH true

and we could readily demonstrate via Theorem 2.8 and Equation (2.15)

(5.4)

∣∣∣∣∣∣ (Kε)
x

π(x)

∏
p≤
√
x

(
p− 1

p

)
− 1

∣∣∣∣∣∣ < π(
√
x)

π(x)
(1 + o (1)) x ≥ 2

Thus we see the error is in the expansion of (Kε)/π(x); this approach is viable only
if it’s better than log. In the (fingers crossed) event we can prove the Riemann
Hypothesis via something like (Kε) ∼ Li(x)/m(x)x, we’ll probably also be able to
show the k-Riemann analogues SLiH(x) are O

(
x1/2+ε

)
+ E close to πH(x)

(5.5) LiH(x) =

∫ x

L

∏
h∈H

1

ln(t− h)
dt ∼ Lik(x) =

∫ x

0

1

(ln t)k
dt

Sieve variations amplified cause πH(x) to “swing” unevenly. We can develop an
improved analog of Littlewood’s Theorem [32]. Theorem 2.4 has l and u where the
Sieve Function Bound is tight. With some algebra we can calculate la and ua at
the ath sieve step and model the swing of πH(x). This would enable us to more
accurately place the counting function (e.g. near u we are close to the upper bound)
and give a subtle order correction to the slope.

Since our bounds are already asymptotically tight, the game is now predicting
where within them πH(x) falls. Note that our “bounds” are more of a “spread”
from the conjunction operator, crudely treating each bp as an independent event.
A further refinement would be to express each bp ≡ bp(x) and see whether more
precision can be squeezed from their interdependence. One also wonders if the
bound pinching around p2 − L give any substantial gains or insights.
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As an intriguing curio, notice that the bounds in Theorem 2.8 become tighter as
k increases. That means that instances become sparser but more regular, and the
initial appearance(s) of H with small L, large k should be highly predictable.

We are completely convinced that the max gap is really GH(x) ≤ O
(
(lnx)k+1

)
,

i.e. Cramer’s [33] and Kourbatov’s [34] Conjectures are true. Here is the thought
experiment why. Given an admissible k-tuple H, create two families of admissible
(k + 1)-tuples: one with H at the front and a lone prime stuck to the end, and the
other with H shifted to the end and the lone prime is the new 0. Both families
may be made with unboundedly large Lk+1 > L. All the (k + 1)-tuples occur on
average every O

(
(lnx)k+1

)
so {insert careful density argument that distinguishes

family members} the original k-tuple must occur at least that often. The constant
is probably something like S/minSk+1.

We speculate that maximal gaps occur on u to l legs where slope is minimized,
probably right before striking l. Connecting log order max gaps to precise movement
of πH(x) would be another major milestone in prime spacing [35].

The pure elimination sieve is an old technique infused with some stimulating
new analysis. It’s time to expand the method, dust off Hardy [36] and Shanks [37],
and start proving prime conjectures.
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[20] P. Chebyshev, Mémoire sur les nombres premiers, Mém. Acad. Sci. St. Pétersbourg 7 (1850),
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